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Abstract

In modern portfolio theory an optimal portfolio is defined as a port-
folio that optimizes both the expected future return and the risk of the
investment. Established methods in portfolio optimization quantify
the estimated risk of an asset by a chosen risk measure and optimize
the portfolio using this risk measure. Currently, portfolios are only
optimized for a single chosen risk measure. Since every risk measure
has flaws, one might desire to optimize a combination of different risk
measures. The task of portfolio optimization is then transformed from
a bi-criteria to a multi-criteria problem. In this work the requirements
on such criteria in the context of portfolio optimization is discussed
and a simple algorithm to solve three-criteria portfolio optimization is
presented.

Zusammenfassung

In der modernen Portfoliotheorie ist ein Portfolio effizient, wenn es
sowohl den erwarteten Profit als auch das totale Risiko der Investition
optimiert. Etablierte Optimierungsmethoden messen das Risiko einer
Investition durch Risikomaße und optimieren ein Portfolio mithilfe die-
ser. Bis jetzt existieren ausschließlich Methoden, die Portfolios mithilfe
eines einzigen Risikomaßes optimieren. Da jedes Risikomaß Schwächen
besitzt liegt es nahe, eine Kombination von mehreren Risikomaßen zu
optimieren. Das traditionelle Portfolio-Problem ändert sich dann von
einem Bi-Criteria zu einem Multi-Criteria Problem. In dieser Arbeit
werden die Anforderungen an zusätzliche Kriterien besprochen und ein
simpler Algorithmus zur Multi-Criteria Optimierung wird vorgestellt.
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1 Introduction

1.1 Background

A field of big interest for quantitative research departments is the develop-
ment of portfolio1 optimization approaches. The aim of such optimizations
is to allocate portfolios in an optimal position in order to maximize the fu-
ture return of the portfolio while simultaneously minimizing the chance of
a potential capital loss. The latter is also called the risk of the portfolio
and is the main subject of interest in portfolio optimization. The risk of a
portfolio cannot be measured precisely. Its evaluation is subject to the field
of Risk assessment and there exist many approaches to estimate the risk of
a portfolio.
The most famous portfolio optimization approach was introduced by Harry
Markowitz in his paper Portfolio Selection [20] in 1952. His approach quan-
tifies the portfolio risk by the volatility of its preceding returns. However this
approach has been subject to criticism and is said to be outdated [16].
Currently, the tendency is to use downside risk measures such as Average
Drawdown at Risk (CDaR) or Conditional Value-at-Risk (CVaR) for portfo-
lio optimization. These risk measures belong to the group of scenario-based
risk measures [3] and describe the risk of a portfolio as the worst average loss
under a set of weighted scenarios.
Scenario-based risk measures proved to comply better with investors per-
ception of risk and are less error-prone to actual return distributions. They
belong to the class of coherent risk measures that was defined by Artzner et
al. [3] and are furthermore convenient to use in optimization.
Nowadays a different approach to risk reduction received attention: Risk
budgeting and tail dependence analysis seek to diversify the risk dependencies
of a portfolio [4]. This can help reduce losses in declining market situations.
However risk dependencies are normally hard to estimate.

1.2 Aim of this work

Until now, portfolio optimization approaches have normally been bi-criteria
optimization problems: Maximizing return while minimizing a chosen risk
measure. However there does not (yet) exist a risk measure that fully captures
the riskiness of an investment. Scenario-optimized portfolios tend to have
high risk concentrations while pure diversification diminishes returns.

1A portfolio is a collection of different economic assets.
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One might therefore seek to optimize multiple criteria simultaneously such
as the return, the conditional value at risk and the diversification of the
portfolio. Doing this could reduce the individual deficiencies of the risk mea-
sures and improve the performance of the optimized portfolios under different
scenarios.
In this thesis we will introduce a method to optimize portfolios under three
criteria: The expected return, a scenario-risk measure and a quadratic di-
versification measure. We will show that individual risk and diversification
measures can be easily substituted and implemented. An exemplary imple-
mentation of this method will be presented for the CVaR as risk measure and
the Herfindahl index as diversification measure and the main characteristics
of this method will be discussed.

1.3 Thesis Structure and Methodology

The thesis is structured as following:

� Chapter 2 sketches the core concepts of portfolio theory and describes
the basic notion of returns, risk and diversification. It contains a de-
scription of logarithmic returns and of variance risk and its limitations.
Furthermore, it answers the question of which properties are needed
to fulfill the requirements for a coherent risk measure. Scenario-based
risk measures are introduced and their advantage over volatility is il-
lustrated. As an representative of scenario-based risk measures, the
basic concepts of the CVaR are discussed. Finally different concepts of
diversification measures are introduced and characterized.

� Chapter 3 introduces the basic definitions and concepts of multi-criteria
optimization. The ε-constraint method is illustrated and used for the
framework of bi-criteria portfolio optimization. It is then briefly de-
scribed how the CVaR can be linearized in the portfolio framework so
that the portfolio problem for the CVaR can then be solved computa-
tionally.

� Chapter 4 is the main chapter of this thesis. It introduces the concept
of the Weighted Sum Method and analyzes its efficiency to find Pareto
optimal solutions. It is then discussed whether and under what con-
ditions it can be applied to basic portfolio optimization. Furthermore
the traditional bi-criteria portfolio problem of optimizing expected re-
turn and risk of the portfolio is extended to a tri-criteria problem. It is
then discussed how this problem can be solved using the weighted sum
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method and how well portfolio allocation works with this method. An
implementation of a tri-criteria portfolio optimization is then presented
and its benefits are illustrated.

� Chapter 5 briefly analyzes the profitability of investment strategies ob-
tained from the implemented optimization method.

� Chapter 6 discusses the computational performance of the presented
implementation.

� In chapter 7 concludes the thesis, emphasizes important results and
gives an outlook for further optimization possibilities of this topic.

1.4 Datasets

For demonstrative purposes several datasets of stock returns were used in
this thesis. These datasets where downloaded from http://finance.yahoo.

com/.
For the visualizations of the concepts in chapter 3 and 4 we used a dataset
with daily log-returns of assets in the Dow-Jones stock index between 2014-
06-27 and 2015-06-25. Additionally a dataset of assets in the LPP2005 bench-
mark index2 between 2006-03-20 and 2007-04-11 is used. This index consists
of only 6 assets and interesting for our discussion in chapter 4 as it illustrates
the difficulties of our implemented method.
For comparison reasons, we additionally depicted the same visualizations for
a dataset of assets in the DAX-stock index between 2014-08-04 and 2015-07-
27. These figures can be found in the Appendix.
For the Rolling-window analysis in chapter 5 we used datasets of assets in the
Dow-Jones stock index between 2000-01-05 and 2015-07-08 and a dataset of
the stock components of the DAX index between 2003-01-07 and 2015-07-27.
For the runtime comparisons in chapter 6 we used the same dataset of the
Dow-Jones index as in chapter 3 and 4

2The LLP2005 benchmark index is published by the Pictet Group. It is an index
designed to represent the investment strategies of Swiss pension funds. It consists of six
independent assets.
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2 Basic Theory

In this chapter the basic concepts of portfolio theory will be explained and
the framework that will be used throughout this thesis will be established.
The concepts of returns, risk and diversification will be established and the
important characteristics of these concepts will be emphasized. The reader is
advised to pay careful attention to the convexity (concavity) of the introduced
measures as this is an essential characteristic for chapter 4.

2.1 Assets, portfolios and returns

A financial asset is an economic resource with an ownership that can be
converted into cash. Both tangible objects such as gold or intangible objects
like a bond can be assets as long they are assigned a positive economic value
[26]. The price of an asset is defined between the owner of the asset and the
issuer, a person that has announced interest in the asset. The typical place
were trades of assets take place are financial markets. Common examples of
assets are

� bonds,

� equities,

� derivatives,

� currencies, and

� funds.

A portfolio is a collection of assets investments [22]. The amount of invest-
ment into each asset may differ. The purpose of a portfolio is to generate
wealth through accretion of the held assets while reducing the investment
risk via diversification.
We will define the amount of investment into asset i by xi. The portfolio can
then be characterized by the vector x̄ of all asset weights xi.
We will normalize the total investment volume of an investor to be equal to
one so that we have a consistent framework. Furthermore we will require that
all available resources are invested. This normalization can then be expressed
as

N∑
i

xi = 1 (1)
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Normally in portfolio selection theory, only long-term portfolios are consid-
ered which means that we forbid short selling. Consequently we will introduce
the additional constraint

∀i ∈ {1, ..., N} : xi ≥ 0. (2)

We will work with this convention throughout this thesis.

The traditional portfolio problem approaches the objective of finding a
portfolio that minimizes risk while maximizing expected return. As these
aspirations are often not compatible, the portfolio making the ideal compro-
mise is the object of interest [22]. To explore this problem further, we will
introduce the concepts of risk and returns first.

Returns

The price of financial assets normally changes over time. To measure the
appreciation of an asset, a quantity called the return of an asset is used. The
simple net return Rt of an asset over a period of time is defined as

Rt =
P t − P t−1

P t−1
(3)

where P t is the price of the asset at the beginning of the period and P t+1

is the price at the end of the period. Returns are a percentage and can be
either positive or negative.
More often used than the simple net return is the continuously compounded
return or log return rt of an asset:

rt = ln(1 +Rt) = ln(
P t

P t−1
) (4)

An advantage of the log return over the net return is that log returns are
additive under aggregation of prices: If we want the cumulative log return
over k periods, we sum over all k log returns

rt[k] = ln(
P t

P t−k ) =
t∑

i=t−k

ri (5)

Thus in this thesis log returns will be used instead of simple net returns.
When speaking of returns, the term should be understood as log returns.
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Expected return

The future value of an asset cannot be exactly predicted. However it is of
great interest for investors to make an estimation on the future behaviour of
an asset. If we assume the return to behave like a random variable, the best
unbiased estimator of the expectation value of the return E(r) is the mean
value of all prior returns [22]:

E(r) =
1

N

N∑
i=1

ri (6)

where N is the number of time steps (i.e. trading days) that are incorporated
in the calculation. Note that for log returns, E(r) is just the return over all
periods rt[N ] (see equation 5).
The expected return of a portfolio of n assets is given by the sum

E(rP ) =
∑
i

xiE(ri) = x̄ · µ (7)

where r1, ..., rn are the log returns of the different assets and µi = 1
N

∑N
t=1 r

t
i .

Note that the expected return is a linear function of the portfolio weights
x̄. This fact will become crucial in the later discussion.

The expected return is no guarantee for future returns. However, it is an
established forecast to estimate the future value of an asset and it provides
a measure of actual returns.

2.2 Risk

Trading in assets whose future values are uncertain necessarily involves risk
for the investors. The management of risk is a major concern when operat-
ing in financial markets. The desire for reduction of investment risk is also
the driving force in portfolio optimization. This section will discuss several
concepts of risk assessment.

Variance

The most widely used risk measure is the variance. Harry Markowitz pro-
posed 1952 in his article Portfolio selection* [20] to identify the riskiness of
an asset with the variance of its returns. It is the simplest established risk
measure and for that reason the basis for the traditional portfolio theory, also
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called mean-variance portfolio theory [26]. This theory treats the returns as
random variables with normal distribution3. The variance measures the re-
turn fluctuations of an asset: The higher the variance, the greater are the
return differences during the observed time period.
Assume normally distributed random variables. The variance of a random
variable X is defined [14] as

σ2(X) = E
[
(X − E[X]

)2
]

The covariance between two random variables Xi, Xj is defined to be

σ(Xi, Xj) = E
[(
Xi − E[Xi]

)(
Xj − E[Xj]

)]
Notice that σ(X,X) = σ2(X).
The variance of a weighted sum of random variables

X̄ā =
∑
i

aiXi

is then defined as

σ2(X̄ā) = σ(X̄ā, X̄ā) =
∑
i

∑
j

aiajσ(Xi, Xj)

= āT Σ ā

(8)

where Σ is the covariance matrix between all random variables Xi and ā is
the vector of weights. The variance of a portfolio x̄ can then be written as

σ2(x̄) = x̄T Σ x̄ (9)

Markowitz understood this quantity as the risk of a portfolio.
Note that the variance as well as the covariance of random variables is not
necessarily finite for non-normally distributed random variables! We will talk
about that issue in the next section.
The covariance matrix is positive semi-definite [14]. An important conse-
quence of this is that the variance risk measure is a convex function of port-
folio weights, i.e. for two sets of portfolio weights x̄1 and x̄2 and a ∈ [0, 1] we
have

σ2(ax̄1 + (1− a)x̄2) ≤ aσ2(x̄1) + (1− a)σ2(x̄2) (10)

3This requirement can be weakened to elliptical distributions [5, 23].
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We can refine this statement for the case where no asset is perfectly correlated
to a combination of other assets (i.e. the span of all N random variables
(assets) is N -dimensional): Assume a set of N random variables (assets)
Xi, i ∈ {1, .., N}. If

∀i ∈ {1, .., N} 6 ∃ā ∈ RN−1, c ∈ R : Xi =
N∑
k 6=i

akXk + c (11)

then the covariance matrix is positive definite and thus the variance is a
strictly convex function of portfolio weights:
For two sets of portfolio weights x̄1 and x̄2 and a ∈ (0, 1) we have

σ2(ax̄1 + (1− a)x̄2) < aσ2(x̄1) + (1− a)σ2(x̄2) (12)

Risk measures that are strictly convex under the condition in equation 11
are also called strictly convex modulo translation [6].

Disadvantages of the variance risk measure

� An enormous drawback of Markowitz’s portfolio model is the require-
ment of multivariate normal distributions for the asset returns. This
requirement is necessary in order to provide finite variance and expec-
tion values. In reality, returns are rarely normally distributed.

In 1983, Owen & Rabinovitch and Chamberlain extended Markowitz’s
portfolio model such that the requirement for multivariate normal dis-
tributions can be generalized to the requirement of multivariate elliptic
distributions while the mean-covariance matrix is generalized to the
mean-characteristic matrix [5, 23].

In 2012 Chicheportiche & Bouchaud published their article The joint
distribution of stock returns is not elliptical [7], which states that in
reality asset returns have bigger tails and are far from being jointly
normally (nor elliptically) distributed.

Figure 1 shows a comparison between a normal distribution and the
actual distribution of returns for the Dow Jones index. The y-axis is
log scaled. The heavy tails of the actual distribution are clearly visible
compared to the normal distribution.

� The Markowitz portfolio model works with the true covariance of the
assets. In reality, covariance estimators have to be used to obtain a
covariance matrix. These estimators often generate a biased result and
tend to underestimate the risk. N. E. Karoui et al. [17] showed that the
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Figure 1: A comparison between a fat tailed daily return distribution (red)
and a normal distribution (blue) with similar mean and variance. The his-
togram contains daily log returns of assets in the Dow Jones index from
March 20 2008 to June 25 2015. The density distribution was calculated
from kernel density estimation using the density-function in the R-package
stats5.

underestimation of the risk is minimal for i.i.d. normal distributions,
but more pronounced in an elliptic and correlated scenario ([17] and
[10]). For heavy-tailed distributions, it is in general difficult to estimate
the variance (if finite) correctly.

� For normally distributed returns, the variance might be an adequate
risk measure as it fully describes the distribution. For general distri-
butions, other characteristics might be a more realistic representation
of the way in which investors perceive risk since the variances penal-
izes both downside and upside extremes. In reality, risk is understood
as an asymmetric measure as only downside extremes are undesired.
Markowitz later favoured semi-variance and downside deviation as risk
measures [13]. Another alternative risk measure that we will focus on
in the next section is the Conditional Value at Risk (CVaR).

Figure 2 shows a comparison between a normal distribution and the
actual asymmetric distribution of returns of Exxon Mobil. The actual

5http://stat.ethz.ch/R-manual/R-patched/library/stats/html/density.html
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Figure 2: An example of an asymmetric daily return distribution (red) com-
pared to a normal distribution (blue) with similar mean and variance. The
histogram contains 770 daily log returns of Exxon Mobil from April 05 2012
to June 25 2015. The density distribution was calculated from kernel density
estimation using the density function in r-stats.

return distribution shows a clear kurtosis. Due to this kurtosis the risk
of a loss is different from a normal distribution.

� Despite the structural flaws of the variance risk, it can - like any other
risk measure that is based on analysing posterior returns - be criticized
for relying on the past of the asset. An asset can behave differently
in the future than it did before. A projection of the past riskiness of
an asset into the future is not always correct, especially in turbulent
times.

Coherent risk measures

As the variance does not satisfy the requirements of a risk, Artzner et al.
[3] proposed a framework that proper risk measures should fulfill in order
to suffice the perception of a risk. These risk measures are called coherent
risk measures. Artzner defined the conditions on a coherent risk measure as
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following:

Definition 1. Suppose Ω is a linear vector space of random variables X1, X2, ...
with finite expectation value (in our context the space of daily returns). A
coherent risk measure on Ω is a function

ρ : Ω→ R ∪ {+∞} (13)

that satisfies the following axioms:

Axiom 1: Normality

ρ(0) = 0 (14)

In other words, there is no risk in holding no assets. Artzner additionally
required that

∀X 6= 0 : ρ(X) > 0, (15)

i.e. there are no risk free assets.

Axiom 2: Monotonicity

If X1, X2 ∈ Ω and X1 ≤ X2 ⇒ ρ(X1) ≥ ρ(X2) (16)

The ≤ is to be interpreted as a probabilistic almost all. In our context this
means that if almost all returns generated by asset A are greater than all re-
turns generated by asset B, then A cannot be riskier than B. This condition
is not fulfilled by the variance as a portfolio that only generates losses can
have a lower variance than a portfolio that only generates positive returns.

Axiom 3: Subadditivity

∀X1, X2 ∈ Ω : ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) (17)

This axiom will later be important for us. It states that every combination of
assets A and B cannot be riskier than the sum of the single risks of A and B,
i.e. that diversification does not increase the risk.
Axiom 4: Positive homogeneity

a ≥ 0 : ρ(αX) = αρ(X) (18)

This just means that the risk scales linearly with the amount of investment
in an asset.
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Axiom 5: Translation invariance

α ≥ 0 : ρ(X + α) = ρ(X)− α (19)

Axiom 5 states that if you add cash to your portfolio, its risk reduces. This
axiom is also not fulfilled by the variance.

Artzner et al. [3] understood these conditions as the minimum requirements
on a risk measure. Every risk measure that does not fulfill these requirements
can not resemble the human perception of risk.

Definition 2. Let Ω be a probability sample space. Let P be a set of prob-
ability measures on Ω. Let G be the linear vector space of random variables
on Ω. A risk measure defined by the function

ρP(X) = sup
P∈P

{
EP[−X]

}
(20)

on G is called a scenario-based risk measure.

Artzner et al. proofed6 that a risk measure is coherent if and only if it is of
the form in equation 20 [3]. The principle idea behind scenario-based risk
measures is to measure maximum expected loss of the asset where certain
scenarios can be weighted heavier than others to mitigate their effect on the
result.
Scenario-based risk measures possess a property that will come very handy
for us. Cheridito et al. [6] proofed the following for all scenario-based risk
measures:

Theorem 1. Let Ω be a probability sample space. Let ρP(X) be a scenario
based risk measure. Let X1(ω), ..., XN(ω) ∈ G, ω ∈ Ω be a set of random
variables on Ω with finite expectation value.
Assume the following: For all subsets A ∈ Ω with P (A) > 0, none of the
random variables X ∈ G is linearly dependent on the others, i.e. 6 ∃i ∈
{1, .., N} : ∀ω ∈ A Xi(ω) =

∑
k 6=i akXk(ω).

Then ρP(Y ) is strictly convex in portfolio weights.

6The exact statement is as following: Proposition: A risk measure ρ is coherent if
and only if there exists a family P of probability measures on the set of states of nature,
such that ρ(X) = supP∈P

{
EP[−X]

}
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2.3 CVaR as an example for scenario-based

risk measures

Already before Artzner et al.’s [3] publication of a framework for coherent
risk measures, investors were aware of the downsides of the variance risk and
consequently strived for alternative risk measures.
In this section we will analyze a well established risk measure, the Conditional
Value at Risk (CVaR), as a representative for the class of scenario-based risk
measures. For that, a brief overview over the Value at Risk (VaR), the basis
for the CVaR, is needed.

Value at Risk

Worst 5th percentile
95% of all returns are better
5% of all returns are worse

Worst 1th percentile
99% of all returns are better
1% of all returns are worse

−2 −1 0 1
log−returns in %
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Figure 3: Visualization of the VaR at 1% and 5% for a gaussian distribution.
99% resp. 95% of all returns are on the greater than the VaR0.01 resp. the
VaR0.05, only 1% resp. 5% of all returns are lower.

The concept of the VaR emerged in the late 1980s, as a consequence of the
stock market crash in 1987 [16]. The events during the crash were much more
extreme than the standard statistical models would allow. Hence investors
desired a better risk modeling of the extreme losses of a return distribution.
In 1994 JP Morgan published the first public methodology of the VaR.
Artzner et al. [3] define the VaR at α of a distribution as the threshold where
the probability of a loss exceeding the VaR is α. More mathematically, if X
is a random variable and α ∈ (0, 1), then
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VaRα(X) := − inf{l ∈ R : P (l < X) ≤ 1− α} (21)

or in other words, the VaRα(L) is the level-α-quantile of L.
For investors, the VaR signifies the threshold such that losses exceeding the
threshold become unlikely.

Conditional Value at Risk

Apparently the VaR is not a coherent risk measure as it fails to satisfy the
subadditivity property. Consequently the VaR can discourage diversification
and can assign a higher VaR to definitely less risky portfolios [1, 2]. Another
disadvantage of the VaR compared to the variance risk is that it is very
difficult to use in optimization. VaR is non-linear and non-convex, thus
making it very hard to compute a minimum VaR-portfolio, especially when
the return distribution is not normal [21]. Therefore a risk measure based on
the VaR was introduced in order to diminish these issues:

Worst 5th percentile

95% of all returns are better

5% of all returns are worse

CVaR
0.05

−2.50 −2.25 −2.00 −1.75 −1.50
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Figure 4: Visualization of the CVaR at 5% for two distributions. Although
both distribution have the same VaR0.05, their CVaR0.05 is different due to
their different tail behaviour.

Uryasev and Rockafeller [25] define the conditional value at risk (CVaR) at α,
also called expected shortfall at α, of an asset as the conditional expectation
of VaRγ given that γ ≤ α:
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Definition 3. Given that X is a random variable with finite expectation
value and α ∈ (0, 1), then the conditional value at risk φα(X) is given by

CVaRα(X) :=
1

α

∫ α

0

VaRγ(X)dγ (22)

If the distribution of X is continous, then the CV aR is equivalent to the tail
conditional expectation:

CVaRα(X) := − 1

α
E
[
X 1{X≤−VaRα(X)}

]
(23)

Distributions with different tails can have the same VaRα. The behaviour of
the tails is then better characterized by the CVaRα as depicted in figure 6.
As the CVaR is a scenario-based risk measure, it is a coherent risk measure [2]
as well. From subadditivity and positive homogeneity it follows that CVaR
is a convex function of the portfolio weights x̄ and thus better applicable
in optimization than VaR. Furthermore, the CVaR is a strictly convex
function for a set of assets that fulfill the conditions of theorem 1.

1.9

2.1

2.3

2.5

2.7

asset 1 0.5*asset1 + 0.5*asset2 asset 2

 

CVaR

VaR

VaR and CVaR Distribution for two assets

Figure 5: Comparison of the VaR and the CVaR atα = 0.05 for combinations
of two assets. Unlike the CVaR, the VaR is neither convex nor smooth.

Uryasev and Rockafeller [24] showed that the problem of finding the optimal
mean-CVaR-portfolio can be linearized which makes the CVaR more appli-
cable in portfolio optimization than the VaR. The exact framework will be
discussed in section 3.2.
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Advantages of CVaR

� Applicable to asymmetric fat-tailed distributions

� Coherent risk measure

� Convex and smooth

� Can be linearized

� More conservative than VaR
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Figure 6: Visualization of the VaR and CVaR at α =1%

2.4 Diversification

In portfolio theory, diversification reduces risk and adds protection against
extreme events by reducing the dependence on particular assets. In the case
that an asset generates an extreme loss, a more diversified portfolio expe-
riences a smaller loss than a portfolio that is highly invested in this asset.
This effect is said to diminish with an increasing number of assets [11], the
opinions on the optimal number of assets for a diversified portfolio go from
10 to 30 assets.
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While diversification is an intuitive concept, there is no unique quantitative
measure but a wide variety of established diversification measures [18].
Three of them are presented here:

Herfindahl index

This index uses the squared absolute value of the weight vector [18]:

DivH(x̄) := 1−
N∑
i=1

x2
i = 1− x̄T I x̄T (24)

The Herfindahl index does not include any correlation between the assets.
Note that the calculation of the Herfindahl index of a portfolio is as easy
as the calculation of its variance risk and is thus convenient for portfolio
optimization techniques. It is a quadratic and therefore strictly concave
function of portfolio weights.

Mean deviation index

Instead of using the squared portfolio weights, one can measure the deviation
from the Equal-weights-portfolio (EWP), the portfolio that is invested with
1/N in every available asset:

DivMDI(x̄) = 1−
N∑
i=1

|xi −
1

N
| (25)

If we want to maximize the diversification of our portfolio using this risk
measure, the task can be linearized: We introduce another variable vector ȳ
with the same length as x̄. We then introduce the constraints

∀i ∈ {1, .., N} :

yi ≥ xi −
1

N

yi ≤
1

N
− xi

yi ≥ 0

(26)

and formulate the problem as

max
x̄,y

−
N∑
i=1

yi (27)
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Note that this diversification measure is a linear function of portfolio
weights.

Diversifying dependence

Another approach to diversification is through measuring mutual asset de-
pendencies. If we increase the number of invested assets, we do not neces-
sarily decrease the risk of extreme events. Adding an asset to a portfolio
that is highly correlated to an invested asset bears the risk that both assets
simultaneously loose value. Therefore instead of just spreading the portfo-
lio’s weights x̄, one could try to reduce the overall dependencies inside the
portfolio.
There are multiple ways to quantify the dependence between two assets. The
simplest one is the linear Pearson correlation that is related to the covariance
in equation 8. For two random variables Xi, Xj, the correlation is defined as

ρi,j = ρ(Xi, Xj) =
σ(Xi, Xj)√
σ(Xi)σ(Xj)

(28)

[12]. Note that ρi,j ∈ [−1, 1].
A diversifaction measure including the correlation of the assets can then be
defined by simply replacing the identity matrix in 24 with the correlation
matrix:

Divρ(x̄) = 1− x̄Tρx̄ (29)

where ρ =
(
ρi,j

)
. In the case that all assets are completely uncorrelated,

equation 29 reduces to equation 24. Similar to the covariance, Divρ is strictly
concave modulo translation.
The linear Pearson correlation faces the same difficulties as the mean covari-
ance risk measure (see section 2.2) which will not be repeated here. A more
target-aimed way for dependence diversification is to look at tail dependencies
between two assets.
Lower tail dependency is a measure to quantify the probability of a simul-
taneous loss of two assets. If one asset experiences an extreme loss, the tail
dependency is the probability that the other asset experiences one as well.
Figure 7 shows two random variables with extremly high lower tail depen-
dency.
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Figure 7: A sample of 10 000 points drawn from a tail-dependent Clayton
copula.

Definition 4. The lower tail dependency λ between two random variables
Xi, Xj is defined as the following conditional probability:

λi,j = lim
q↗0

P (Xi ≤ F−1
i (q)|Xj ≤ F−1

j (q)) (30)

where Fi(x) is the cumulative distribution of Xi [12].

Like the correlation, λi,j ∈ [0, 1].

We can modify the diversification measure 29 by replacing ρ with λ =
(
λi,j

)
:

Divλ(x̄) = 1− x̄Tλx̄ (31)

Note that the estimation of λi,j is more robust than for ρi,j since it does
not rely on the second moment of the asset distributions (similar to the fact
that the estimation of the CVaR is more robust than the estimation of the
covariance). However the estimation of the tail dependence is not a simple
task and relies on the theory of copulae. More information can be found in
Quantitative risk management by Embrechts et al. [12].
Like the correlation matrix, λi,j is positive semi-definite and thus Divλ(x̄)
convex. λi,j is furthermore positive definite and thus Divλ(x̄) is strictly
convex if

∀i ∈ {1, .., N} :
∑
k 6=i

λi,k < 1, (32)
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i.e. if no asset is completely tail dependent on a linear combination of other
assets. This condition is fulfilled if the conditions of theorem 1 apply to the
given set of assets.
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3 Multicriteria Optimization

Multicriteria optimization, also called multi-objective optimization, is a field
in optimization sciences that deals with problems having more than one ob-
jective function. In other words, a problem having multiple objectives that
are not necessarily compatible is a multicriteria problem. Multicriteria op-
timization is an important topic for investors as the problem of finding a
portfolio that simultaneously maximizes returns and minimizes risk is a mul-
ticriteria problem. In this chapter we will discuss different ways of approach-
ing the problem.
During this chapter we will work with the definitions of portfolio weights
given in chapter 2.1. All definitions will be formulated in such a way that
they directly apply to the portfolio framework.

3.1 Definitions

If there are N different assets available for investment and we forbid short
selling, then the set of all possible portfolios is given by

X = {x̄ :
N∑
i

xi = 1 , xi ≥ 0} (33)

This set is called the feasible set.
To each portfolio certain characteristics such as its risk, its expected return
or its diversification can be assigned. A set of k particular characteristics of
a portfolio can be calculated as a function of the portfolio’s weights f̄(x̄) =
(f1(x̄), .., fk(x̄)T .
If we want this feasible set visualized by quantities like the risk and the
expected return, we use the feasible set in objective space:

Y := f̄(X ) (34)

where f̄(x̄) is the multi-dimensional function to calculate the desired quanti-
ties. If we want the feasible set in the risk-return space, f̄ would be given by
f̄(x̄) := (Risk(x̄), x̄ · µ̄)T . Figure 8 depicts the feasible set in the CVaR-return
space both for the Dow Jones index and for the LPP2005.
Normally an investor desires to optimize more than one quality of his port-
folio. Mathematically, this is a so called multi-objective problem and can be
written as

min
x̄∈X

(
f1(x̄), ..., fk(x̄)

)
(35)
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Figure 8: Visualization of the feasible set Y in the Risk-Return-space and
the position of the available assets. The chosen risk measure is the CVaR.

where k is the number of objectives. For example, the objective functions to
optimize the portfolio problem is given by

f̄(x̄) =

(
CVaRα(x̄)
−x̄ · µ̄

)
(36)

In general, there exists no portfolio x̄ that optimizes all objective functions.
This can also be seen when looking at the feasible sets in figure 8: The
portfolio that maximizes the return does not simultaneously minimize the
portfolio’s expected shortfall. Therefore other criteria to define the ”optimal”
portfolio have to be found:

Definition 5. A portfolio x̄ is called Pareto optimal [9] or Pareto efficient
for f̄ = (f1, f2, ..., fn) if there exists no other portfolio x̄′ ∈ X with

∃i ∈ {1, 2, .., n} : fi(x̄
′) < fi(x̄)

∀j ∈ {1, .., i− 1, i+ 1, .., n} : fj(x̄
′) ≤ fj(x̄)

(37)

or in other words, no portfolio that can achieve better results than x̄ for one
quantity while not performing lower for any of the other quantities.
The set of all Pareto efficient portfolios will be denoted with XE.

Definition 6. A portfolio x̄ is called weakly Pareto optimal [9] or weakly
Pareto efficient for f = (f1, f2, ..., fn) if there exists no other portfolio x̄′ ∈ X
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with

∀i ∈ {1, 2, .., n} : fi(x̄
′) < fi(x̄) (38)

or in other words, no portfolio that can achieve better results than x̄ for every
quantity.
The set of all weakly Pareto efficient portfolios will be denoted with XwE.

Naturally, every portfolio that is considered for investment should be Pareto-
optimal under the chosen objective function.

3.2 Traditional Portfolio Theory

The traditional goal of portfolio optimization is to find the combination of
assets such that an investment minimizes a given risk measure while main-
taining a certain expectation of return. In order to achieve this, investors
rely on the diversification of the investment and the analysis of posterior
asset returns.
We will first to introduce the portfolio optimization framework for general
risk measures. Then we refine this framework by inserting the CVaR as a
general representative for scenario-based risk measures. Keep in mind that
the CVaR can be replaced with any scenario-based risk measure throughout
this thesis.
In the following we will assume two things:

1. The assets fulfill the conditions of theorem 1, i.e. the set of assets cannot
be perfectly correlated on any non-zero subset of the probability sample
space Ω.

2. There are no two assets with exactly the same expected return.

These assumptions will become useful when talking about the efficiency of our
portfolios and in the later discussion of optimization approaches: Assumption
1 will guarantee us strictly convex risk measures. Assumption 2 guarantees
the uniqueness of the portfolio with the maximum expected return.
These assumptions are not unreasonable: Even though most portfolio theo-
ries assume it, information exhange is not perfect in the financial market for
all participants [11]. It is therefore unlikely to observe a perfect correlation
between multiple assets for an observable set of scenarios.
Assumption 2 can always be justified by including more digits into calcula-
tion.
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The most simple way of approaching the portfolio problem is to neglect one
objective and only minimize the other one. For example, an investor might
only be interested in finding the least risky portfolio. This problem could be
formulated as following:

min
x̄

Risk(x̄)

s.t.∑
i

xi = 1

xi ≥ 0

(39)

The constraints guarantee that the portfolio obeys our framework introduced
in chapter 2.1. The solution of equation 39 is called the global minimum risk
portfolio. Naturally the portfolio depends on the choice of the risk measure.
We will refer to the global minimum CVaR portfolio as MCVP. Because of
assumption 1 and theorem 1, our risk measure is strictly convex. Hence the
solution is unique as a strictly convex function has a unique minimum: If
there were two solutions x̄1 and x̄2, a portfolio consisting of a linear combi-
nation of x1 and x2 would have a lower variance than x1 and x2 as x1 and
x2 are not perfectly correlated. Solutions of equation 39 are not necessarily
unique for the VaR risk measure as the VaR is not strictly convex.

An investor could also only be interested in maximizing the return of the
portfolio. For that the formula for the expected return in equation 7 can be
used. A formulation of the problem looks like this:

max
x̄

x̄T µ̄

s.t.∑
i

xi = 1

xi ≥ 0

(40)

The solution of equation 40 is called the global maximum return portfolio
(MRP) and consists just the asset with the highest expected return. As we
assumed that there are no two assets with the same expected return, this
solution is unique as well.
We showed that the solutions of equation 39 and 40 are unique and minimize
one of the two objective functions of the portfolio problem. Consequently
they are Pareto optimal.
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The above discussed approaches are two extreme cases. Normally investors
are interested in a combination of both cases, i.e. a portfolio that has an
appropriate expected return while not being too risky. Naturally, these port-
folios should be Pareto optimal.
As already mentioned, this is a multi-objective problem. The most common
way of solving this problem (which was also introduced my Markowitz) is to
use the ε-constraint method. In this method, only one objective function fk
is optimized while the other objective functions are constrained:

min
x̄
fk(x̄)

s.t. fi(x̄) ≤ εi , i 6= k

x̄ ∈ X
(41)

Ehrgott [9] proved that every unique solution x of equation 41 is in XE.
There are two possible ways of formulating the portfolio problem with this
method [22]:
Firstly, one tries to minimize the overall risk of the portfolio while keeping
the expected return above a constant value. This value is the so called target
return. When requiring full investment and forbidding short selling and using
equation 7, this problem can be written as

min
x̄

Risk(x̄)

s.t.

x̄Tµ ≥ r∑
i

xi = 1

xi ≥ 0

(42)

Similarly to equation 39, every solution of equation 42 is unique for the CVaR
and the variance risk. If there were two solutions x̄1 and x̄2 of equation 42,
every linear combination of x̄1 and x̄2 would have a lower risk than x̄1 and
x̄1 and still fulfill the constraint. Consequently, every solution of 42 is unique
and is thus after Ehrgott in XE.
The Pareto optimal portfolios are distributed between two points (the max-
imum return portfolio and the minimum CVaR portfolio), the XE forms a
line and is 2-dimensional. This line is also called the efficient frontier and
can be seen in figure 9 for the CVaR risk measure.
As the efficient frontier spans between the MCVP and the MRP and every
portfolio on it is unique, we can find every Pareto optimal portfolio simply by
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Figure 9: Visualization of the set of risk-return Pareto optimal portfolios and
maximum-return portfolio (MRP) as well as the minimum-CVaR portfolio
(MCVP.)

chosing any r ∈ [min(µ̄),max(µ̄)]. Note that in general it is not that simple
to find every x̄ ∈ XE. for equation 41 [9].
The second approach is to maximizes the expectation of the return while
limiting the risk:

max
x̄

x̄Tµ

s.t.

Risk(x̄) ≤ r∑
i

xi = 1

xi ≥ 0

(43)

Similar to equation 42, the set of solutions of equation 43 is equal to XE.

3.3 Mean-CVaR-Portfolio

The implementation of a risk measure into equation 42 and 43 appears to
be straight forward. In principle, one could just substitute the Risk(x̄)-term
with an expression for the CVaR and choose the desired quantile. Equation
42 could be reformulated as follows:
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min
x̄

CVaRα(x̄)

s.t.

x̄Tµ ≥ r∑
i

xi = 1

xi ≥ 0

(44)

However, the expression for CVaRα(x̄) in equation 22 is non-linear and thus
it is very hard to solve minx̄ CVaRα(x̄) in computational optimization. How-
ever there exists a way to linearize the problem of equation 44. In the follow-
ing the main steps are presented. For a more detailed discussion, the reader
is advised to read Optimization of conditional value-at-risk by R. Rockafellar
and S. Uryasev [24].

Reformulation
We define r̄ as the vector of all asset returns ri. The return function f(x̄, r̄)
of a portfolio with weights x̄ is then given by

f(x̄, r) = x̄T r̄ (45)

If every ri is a random variable, so is r̄. We define ρ(r̄) to be the distribution
function of r̄. With this framework, the expected return of portfolio x̄ is then
given by

E(Rx̄) =

∫
R
x̄T r̄ρ(r̄)dr̄

With this formulation we can rewrite equation 22 as

CVaRα(x̄) = − 1

α

∫
x̄T r̄≤−VaRα(x̄)

x̄T r̄ρ(r̄)dr̄ (46)

This formulation is also more in the sense of the definition of a scenario-based
risk measure (see equation 20).
Equation 46 is dependent on VaRα(x̄) and thus difficult to optimize. Com-
puting the CVaR requires a computation of the VaR first and thus finding
the minimum of the CVaR is very difficult for industrial solvers. Rockafeller
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and Uryasev [24] showed that 46 can be rewritten as a function that is inde-
pendent of the VaR-function. For that we define the new function

Fα(x̄, β) = β − 1

α

∫
R
[−x̄T r̄ − β]+ρ(r̄)dr̄ (47)

where

[t]+ =

{
t when t ≥ 0
0 when t ≤ 0

(48)

Rockafeller and Uryasev then proved that CVaRα(x̄) can be calculated as the
minimum of Fα(x̄, β) in β:

CVaRα(x̄) = min
β∈R

Fα(x̄, β) (49)

which is now independent of VaRα.

Discretization
Normally we do not know the exact form of ρ(r̄) , therefore we have to use a
sample estimator. The best unbiased estimator for a an integral in the form∫

R
f(r̄)ρ(r̄)dr̄

is

1

S

S∑
i=1

f(r̄i) (50)

where r̄1, .., r̄S are the available sample points. Therefore we rewrite our
function Fα(x̄, r̄) into the estimated function

F̃α(x̄, β) = β − 1

S · α

S∑
i=1

[−x̄T r̄i − β]+ (51)

We now have

CVaRα(x̄) = min
β∈R

β − 1

S · α

S∑
i=1

[−x̄T r̄i − β]+ (52)
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Linearization
Optimizing equation 52 is still hard to solve numerically as it is non-linear
due to the expression [−x̄T ri − β]+. Fortunately it is possible to transform
this expression into a linear form. For that we introduce the variable ū ∈ RS

which is subject to the constraints

uk ≥ 0

uk ≥ −x̄T r̄k − β
(53)

The constraints ensure that

min
uk

uk = [−x̄T r̄i − β]+

We then rewrite the minimization problem in equation 52 as

CVaRα(x̄) = min
β,u

β +
1

S · α

S∑
i=1

uk (54)

We are finally able to write a linear form of equation 44:

min
x̄,β,ū∈RS

β +
1

S · α

S∑
i=1

uk

s.t.

x̄Tµ ≥ r∑
i

xi = 1

xi ≥ 0

uk ≥ 0

uk ≥ −x̄T r̄k − β

(55)

Krokhmal, Palmquist and Uryasev [19] showed that this framework can also
be used for designing CVaR-constrainst. In detail, they showed the following
identity:

maxx̄ x̄T µ̄ = maxx̄,β,ū x̄T µ̄
s.t. s.t.

F̃α(x̄, β) ≤ δ CV aRα(x̄) ≤ δ

(56)
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We can thus formulate equation 43 with CVaR-risk measure as well:

max
x̄,β,ū∈RS

x̄T µ̄

s.t.

β +
1

S · α

S∑
i=1

uk ≤ r∑
i

xi = 1

xi ≥ 0

uk ≥ 0

uk ≥ −x̄T r̄k − β

(57)

In the following we will always choose α = 0.05 when computing CVaRα.
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4 Weighted Sum Method

As described in the introduction, we will introduce a method to extend the
bi-criteria portfolio problem into a tri-criteria one. However the ε-constraint
method faces problems when optimizing more than two objectives. To be
able to achieve this, we will now introduce a different approach to solve
multi-criteria optimization problems: The weighted sum method.
We will first describe and analyze this method and apply it to the bi-criteria
portfolio problem. Afterwards we will use this method to extend the problems
into a tri-criteria one and discuss its benefits and flaws.

4.1 Definitions

The weighted sum method is the simplest and best known solution method
to multi-objective problems [9]. A multi-objective problem of the form

min
x̄∈X

(
f1(x̄), ..., fk(x̄)

)
(58)

can be solved as a single objective problem of the form

min
x̄

k∑
i=1

λifi(x̄) (59)

with λi ∈ [0, 1]. The value of λi represents the emphasis on the i’th objective.

We assume that ∃i ∈ {1, .., k} : λi > 0, otherwise problem 59 is not well de-
fined. We write this condition as λ̄ ≥ 0. Furthermore, if ∀i ∈ {1, ..., k} : λi >
0, we write λ̄ > 0.
Obviously, if λ̄ is of the form

λ̄ =



0
...
0
1
0
...
0


(60)

equation 59 reduces to a problem of the form of equation 39.
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It is common practice to constrain the choice of λ̄ such that

n∑
i=1

λi = 1 (61)

This makes sense since the set of Pareto optimal solutions is at most a k− 1
dimensional manifold but λ̄ is k-dimensional. Consequently there are many
values for λ̄ for which equation 59 is equivalent. For instance, the problem is

the same if ∀i : λi = 1 or if ∀i : λi = 0.5. For every λ̄ and ˆ̄λ that are linearly

dependent ˆ̄λ = αλ̄, the problem is equivalent.
In general if

∑n
i=1 λi � 1 the solutions are not likely to be numerically stable

[15]. Furthermore the objective functions should be normalized such that
their extrema lie in the same value range.
We are now interested in the efficiency of solutions of equation 59. Ehrgott
[9] proved the following theorems:

Theorem 2. Assume that ˆ̄x is an optimal solution for a problem of the form
of equation 59 with λi ∈ [0, 1] . Then the following is true:

1. If λ̄ > 0, then ˆ̄x ∈ XE

2. If λ̄ ≥ 0, then ˆ̄x ∈ XwE

3. If λ̄ ≥ 0 and ˆ̄x is a unique optimal solution, then ˆ̄x ∈ XE

Theorem 3. Assume that X is a convex set and ∀i ∈ {1, ..., k}, fi are convex
functions. Then the following is true:

1. If ˆ̄x ∈ XE, then ∃λ̄ ≥ 0 such that ˆ̄x is a solution of the problem 59 with
λ̄.

2. Assume further that there at least one function fi is strictly convex.
If λ̄ ≥ 0 and λi 6= 0, then there is a unique solution ˆ̄x ∈ XE for 597.

A direct consequence of theorem 2 and 3 is the following statement:

Assume that X is a convex set and that fi, i ∈ {1, ..., k} are strictly
convex functions. Then every solution ˆ̄x of 59 is unique and the set of

solutions of is equal to XE.

7The second statement of theorem 3 was not actually proven by Ehrgott in Multicriteria
optimization, but is a consequence of the fact that every strictly convex function has a
unique minimum and the fact that the sum of a convex function and a strictly convex
function is strictly convex.
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These theorems will be very important to us in the following.
Please note that if f1, .., fk are convex but not strictly convex (i.e. linear),
every Pareto optimal x̄ is a solution of 59 for some λ̄, but most x̄ ∈ XE are
not unique solutions for this λ̄. This can be seen in the following example:
Let the interval [0, 1] be our feasible set X . Assume we have two objectives
and our linear objective functions are given by

f1(x) := x

f2(x) := −(x− 1)
(62)

The minimum of f1 is x = 0, the minimum of f2 is x = 1. Obviously the
whole interval [0, 1] consists of Pareto optimal solutions for our problem. We
write λ1 =∈ [0, 1], λ2 = (1− λ1). The sum of equation 59 is then given by

g(x, λ) =
2∑
i=1

λifi(x) = x(2λ1 − 1) (63)

This function has its global minimum for λ ∈ [0, 0.5) at x = 1, for λ ∈ (0.5, 1]
at x = 0. For λ = 0.5, g(x, 0.5) = 0 and thus every value in the interval is
an optimal solution to the problem

min
x∈[0,1]

g(x, λ = 0.5) = [0, 1] (64)

For computational solvers, this situation is normally very difficult and the
solver will typically pick one of the possible values instead of returning the
whole interval. Consequently the whole set of Pareto optimal solutions will
not be found completely. The situation is different if we deal with strictly
convex functions, for example

f1(x) := x2

f2(x) := (x− 1)2

g(x, λ) = x2 + 2λx− 2x− (λ− 1)

(65)

where for every λ the solution is unique. A comparison is depicted in figure
10.
A disadvantage of the weighted sum method is the fact that different λ̄ can
yield the same solution, even if the objective functions are strictly convex.
Additionally, a uniformly distributed set of λ̄ values is no guarantee for a
uniformly distributed set of solutions. This is also true for strictly convex
objective functions. A rule of thumb is that the solutions are distributed
better across XE if the objective functions are nowhere close to being linear.
Also in both cases it helps if the objective functions are normalized such that
their images fi(XE) fill the same interval.
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Figure 10: A comparison of the effectiveness of the weighted sum method
for linear (red) and strictly convex (blue) objective functions. Note that the
linear functions only gives two different minima while the strictly convex
functions gives the whole interval.

4.2 Critical Line Algorithm

We will now look at the implementation of the weighted sum method to solve
the Portfolio problem.
In 1956 Markowitz introduced an early version of this method. We will look
at it a bit closer as it is crucial for the next chapter.
A way to find the portfolio weights on the efficient frontier is to introduce
the variable λ ∈ [0, 1] and formulate the optimization problem as

min
x̄∈X

−λReturn(x̄) + (1− λ)Risk(x̄)

λ represents the emphasis of the investor on the particular criteria: If λ = 0,
the interest lies only on minimizing the risk, if λ = 1 the investor is only
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interested in maximizing the expected return.
This is a version of the weighted sum method. Our objective functions are
given by

f1 = −Return(x̄) = −x̄T µ̄
f2 = Risk(x̄)

(66)

As mentioned above, the expected return is a linear function of the portfolio
weights whereas the risk is for scenario-based risk measures a strictly con-
vex risk measure (as we assumed that there are no assets that are perfectly
correlated for a non-zero set of scenarios).
As a consequence of theorem 3, every Pareto optimal portfolio x̄ ∈ XE can
be found by this method. Furthermore, we can apply the second statement
of theorem 3 for every λ < 1. Thus the portfolio solutions x̄ for λ < 1 are
unique and thus in XE.
If λ = 1, the portfolio solution is the maximum return portfolio MRP. We
already showed that this portfolio is a unique solution of equation 40 and
thus also of equation 66.
We have thus shown that every Pareto optimal portfolio x̄ is a unique solution
for some λ ∈ [0, 1].
The implementation of this algorithm for the CVaR-risk measure looks like
this:

max
x̄,e,β

λ1 · x̄T µ̄− (1− λ) · (β − 1

αs

s∑
i=0

ei) (67)

s.t. (68)∑
i

xi = 1 (69)

xi ≥ 0. (70)

ei ≥ β −
s∑
j=0

xiri,j (71)

At this moment, the risk contribution of equation 67 is not necessarily in the
same order of magnitude as the risk contribution, i.e. they are not normalized
to the same order of magnitude. This can lead to undesired behaviour: If
the objective function fi takes values in a much greater range than the other
objectives, the sum of the objectives will take its minimum very close to
the minimum of fi. As a consequence, the resulting portfolios will not be
distributed uniformly along the efficient frontier. To prevent this, we will
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normalize the CVaR and the return term so that both can take values between
0 and 1.
The most extreme points on the efficient frontier for both the CVaR and
the return are the MRP and the MCVP. We thus use their coordinates in
CVaR-Return plane for the normalization:
We then rewrite the return term as

x̄T · µ̄− rMCV P

rMRP − rMCV P

(72)

where

rMCV P = x̄TMCV P · µ̄
rMRP = x̄TMRP · µ̄
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Figure 11: Distribution of the portfolio solutions of equation 74 for different
λ values.

We normalize the CVaR-term in the same way:

1

cMRP − cMCV P

(VaR− 1

αs

s∑
i=0

ei − cMCV P ) (73)

where cMCV P is the CVaR-value for the MCVP and cMRP is the CVaR-value
for the MRP. The problem can now be written as
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max
x̄,e,β

λ1 ·
x̄T · µ̄− rMCV P

rMRP − rMCV P

− (1− λ)

cMRP − cMCV P

(VaR− 1

αs

s∑
i=0

ei − cMCV P )

s.t.∑
i

xi = 1

xi ≥ 0.

ei ≥ VaR−
s∑
j=0

xiri,j

(74)

A visualization of the portfolio distribution of the unnormalized critical line
algorithm can be found in figure 25.
The critical line algorithm in principle parametrizes the efficient frontier.
This parametrization can take very unpleasant forms depending on the shape
of the efficient frontier. The behaviour for different λ-values is depicted in
figure 11.
As one can see in figure 11, for the LPP2005 the largest part of the efficient
frontier is filled by the small range λ ∈ (0.4, 0.6). Also notice the concentra-
tion of portfolios on the MRP and the MCVP: For all λ > 0.576, the portfolio
obtained from the critical line algorithm will be the MRP.
The situation is not as dramatic for the efficient frontier of the Dow Jones
index: The portfolios are much more spread along the efficient frontier and
there is not such a high concentration on the MRP and the MCVP. The MRP
is hit for λ > 0.903.
The reason for this difference lies in the different shapes of the efficient fron-
tier: For the Dow Jones index the frontier is less close to a linear function
whereas a large part of the frontier of the LPP2005 is almost linear. As
explained above, the weighted sum method only finds every Pareto optimal
portfolio if the objective functions are not linear. This is due to the fact that
for linear objective functions, almost all portfolio solutions are only solutions
to the same λ̄. If the objective functions are deviated from being linear into
being strictly convex, this single λ̄ for which these portfolios are a solution
is then stretched to a set of λ̄ values. Still if the objective functions are very
close to being linear, this set of λ̄ values is very small. The portfolio solutions
are therefore distributed more uniformly if the objective functions are strictly
convex and not close to being linear (i.e. rounder).

41



As already mentioned in the introduction, the LPP2005 is an index illustrat-
ing the limitations of the weighted sum method. Figure 12 shows that the
hull of the feasible set of the LPP2005 is more stretched and less round than
the hulls of the Dow-Jones index or the DAX for comparison (see figure 12
and figure 27). Consequently the efficient frontier is closer to a linear curve.
This phenomenon can be explained due to the small number of assets in the
LPP2005. Larger indices tend to have a rounder hull and thus a more curvy
efficient frontier (see the hull of the Dow-Jones index in figure 13 and the
hull of the DAX index in figure 27).

4.3 Three Goal Programming

Diversification has proven to be very efficient at reducing risk from individual
assets. As the CVaR is a a posteriori risk measure, i.e. it only considers past
returns, it might not capture the future risk of an asset fully. An asset might
have generated high and stable returns in the past, but due to structural
changes this behaviour might change drastically in the future. Diversification
can help reduce the dependence on such assets.
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Figure 12: Visualization of the diversification along the efficient frontier

In figure 12 the diversification of the portfolios on the efficient frontier is
depicted. As it is visible, the portfolios along the critical line are not very
diversified. The MRP is a single asset and the MCVP has a high concentra-
tion risk as well. Regarding the above considerations, the investor might not
be satisfied by these portfolios, i.e. the Pareto efficient solutions from the
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bi-objective CVaR-return problem might not be optimal in reality as they are
not diversified enough. To improve that, we turn the bi-objective problem
into a tri-objective one. Additionally to the CVaR and the expected return,
we add the diversification as an objective.
In this case, the Pareto optimal portfolios are spanned between three points:
The MRP, the MCVP and the equal weights portfolio (EWP) which is the
most diversified portfolio. Consequently the set of all Pareto optimal portfo-
lios is a two dimensional surface with three frontiers.
In a tri-objective problem it is not easy to find all Pareto-optimal portfo-
lios using the ε-constraint method: Depending on the choice of ε̄ the prob-
lem might have multiple solutions or none. If ε̄ is chosen too pessimistic,
many weakly efficient portfolios will satisfy the constraints additionally to
the Pareto efficient one. If ε̄ is chosen too optimistic, the constraints might
be so restrictive that there is no portfolio satisfying them. It is therefore
difficult to find ε̄ such that the solution of 41 is Pareto efficient.
If our problem is strictly convex we already know that we will find all Pareto
optimal solutions with the weighted sum method. It therefore appears to be
a better approach on a tri-objective problem than the ε-constraint method:

min
x̄∈X

−λ1 · Return(x̄) + λ2 · CVaR(x̄)− λ3 ·Diversification(x̄)

s.t.

λ1 + λ2 + λ3 = 1

(75)

The first thing we have to do is choose a diversification measure for the
objective function. The mean-deviation index is a linear function of the
portfolio weights. As the expected return is a linear function as well, we
cannot apply the second statement of theorem 3 if λ2 = 0. Therefore the
mean-deviation index is not suited as an objective function. However if we
choose a strictly convex (concave) diversification measure, we can apply 3 for
λ1 < 1 even though the expected return is linear.
The Herfindhal index DivH(x̄ is a strictly concave risk measure and can
thus fulfill our requirements on an objective function. The tail dependence
diversification Divλ(x̄) is also strictly concave under our assumptions. Both
risk measures are easy to implement in our framework as they are quadratic
and therefore numerically optimizable.
We will demonstrate the method with the Herfindhal index:
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Figure 13: Visualization of XE for the problem in equation 77 and the
positions maximum-return portfolio (MRP), the minimum-CVaR portfolio
(MCVP) and the equal weights portfolio (EWP).

f1(x̄) := −x̄T µ̄
f2(x̄) := CVaR(x̄)

f3(x̄) := x̄T I x̄

(76)

Keep in mind that it is uncomplicated to substitute the Herfindhal index
with Divλ(x̄) as we just have to substitute the identity matrix I with λ.
Because of our normalization in equation 61, we can write λ3 = (1−λ1−λ2).
The implementation of equation 75 then looks as following:

min
x̄,e,β

−λ1 · x̄T µ̄+ (1− λ) · (β − 1

αs

s∑
i=0

ei) + x̄T · x̄

s.t.∑
i

xi = 1

xi ≥ 0.

ej ≥ β −
N∑
i=0

xiri,j

(77)
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As both f2 and f3 are strictly convex and f1 is convex, we can apply theorem
3 and find that every Pareto optimal portfolio is found by equation 77. As
for λ1 < 1 every solution is unique due to theorem 3 and we already proved
that for λ1 = 1 the solution is the unique MRP, we can conclude that for
every λ̄ there exists a unique portfolio solution x̄ ∈ XE.
Figure 13 shows the surface of Pareto optimal portfolios in the CVaR-Return
plane for the LPP2005 and for the Dow Jones index. Note that although not
every point in the CVaR-Return plane is a unique portfolio, every point in the
Pareto-optimal surface corresponds to exactly one Pareto optimal portfolio.
We will again normalize f1 and f2 as in chapter 4.2 to take values in [0, 1].
However we have to make adjustments: The minimum return-portfolio and
the maximum CVaR-portfolio are not trivial anymore. We will make the
following estimations: rMCV P will be replaced with rmin = min[rMCVP, rEWP]
and cMRP will be replaced with cmax = max[cMRP, cEWP. It is not guaranteed
that f1 and f2 take values only [0, 1] as there might be efficient portfolios
with a smaller return than rmin on the frontier between the MCVP and the
EWP or portfolios with a higher CVaR than cmax on the frontier between the
MRP and the EWP. However it is unlikely that these values will significantly
higher/lower than our estimates and our normalization is still close enough
to [0, 1].
As f3(x̄) ∈ [0, 1], we do not have to normalize f3. With normalization,
equation 77 looks like this:

minx̄,e,β −λ1 · x̄
T ·µ̄−rmin

rMRP−rmin

+ (1−λ)
cmin−cMCVP

(β − 1
αs

∑s
i=0 ei − cMCVP)

+(1− λ2 − λ1) · x̄T x̄
s.t.∑

i

xi = 1

xi ≥ 0.

ei ≥ β −
N∑
j=0

xiri,j

(78)

In figure 14, a set of portfolios calculated for the LPP2005 and the Dow Jones
index is depicted in the CVaR-Return plane. The portfolios were calculated
using equation 78 for different λ1, λ2-values. These values are drawn from a
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with goal programming using equation 78. The points are drawn from a grid
with distance 1

30
between the λ-values. The color of a point indicates the

diversification of the portfolio.

46



0.00

0.25

0.50

0.75

1.00

0.5 1.0 1.5
CVaR

D
iv

er
si

fic
at

io
n

LPP2005

0.00

0.25

0.50

0.75

1.00

1.2 1.6 2.0 2.4
CVaR

Dow Jones

 
MRP
MCVP
EWP

0.02
0.03
0.04
0.05
0.06

Return

Figure 15: Portfolio positions in the CVaR-Diversification plane when opti-
mized with goal programming using equation 78. The points are drawn from
a grid with distance 1

30
between the λ-values. The color of a point indicates

the expected return of the portfolio.

47



0.02

0.03

0.04

0.05

0.06

0.00 0.25 0.50 0.75 1.00
Diversification

R
et

ur
n

LPP2005

0.04

0.08

0.12

0.16

0.00 0.25 0.50 0.75 1.00
Diversification

Dow Jones

0.5

1.0

1.5
CVaR

 
MRP
MCVP
EWP

Figure 16: Portfolio positions in the Diversification-Return plane when op-
timized with goal programming using 78. The points are drawn from a grid
with distance 1

30
between the λ-values. The color of a point indicates the

CVaR of the portfolio.

grid of equidistant λ1 − λ2-points with λ1 + λ2 ≤ 1. The distance between
the λ̄-points is 1

30
. This grid can be seen in figure 26.

We can also display the portfolio solutions in other planes than the CVaR-
Risk plane: Figure 15 and 16 show the set of calculated portfolios in the
CVaR-Diversification plane and in the Diversification-Return plane.
When comparing the different frontiers the effect of the eminently non-linear
form of the diversification measure can be perceived. We can see how uni-
formly the portfolios are distributed across the frontier between the EWP
and the MCVP for both the Dow Jones and the LPP2005 in figure 15. Also
in figure 16 the frontier between the EWP and in this case the MRP is pop-
ulated evenly for both plots. This stands in contrast to the frontier between
the MCVP and the MRP that we discussed in chapter 4.2. This frontier is
populated very sparsely for the LPP2005 and only moderately for the Dow
Jones.
The uniform behaviour of the weighted sum method for the frontiers spanning
from the EWP can be explained by non-linearity of the Herfindhal index. It is
quadratic and thus everywhere far from being linear. Thus for both frontiers
at least one objective function and consequently the sum of all objective
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functions show non-linear behaviour. For the frontier between the MCVP
and the MRP the contribution of the diversification is always zero. Due
to the linearity of the expected return and the occurring closeness of the
CVaR to a linear function, the weighted sum method does not distribute the
portfolios as even as for the other frontiers.

4.4 Ternary maps

A ternary map or ternary plot is a plot used to show the compositions of
systems composed of three species [27]. A ternary map has a triangular
barycentric coordinate system in which every position corresponds to a ratio
of three variables that sum to a constant. Each of the three corners corre-
spond to a composition of exclusively one species. Ternary maps are very
common in metallurgy where they depict characteristics of alloys as a func-
tion of their composition. Since λ1, λ2 and λ3 in equation 78 also sum up to
a constant, every λ̄-values can be seen as a position in a ternary map.
In figure 17 to 22, ternary maps for the LPP2005 and the Dow Jones are de-
picted. Additionally, ternary maps for the DAX can be found in the appendix
in figure 28, 29 and 30.
These ternary maps have three axes, one for each λi. As λ3 = (1− λ1 − λ2),
all allowed values for λ̄ can be mapped to a point on the grid. In each of the
three corners lies one of the three extreme portfolios, the MRP, the MCVP
or the EWP. Contour lines are added to illustrate behaviour of the expected
return, the CVaR and the diversification in dependence of λ̄.
Figure 17, 19 and 21 display the Diversification, the CVaR and the expected
return for the LPP2005. The different distribution of portfolios along the
three frontiers can be seen very clearly in the ternary plots: The frontier
between the MCVP and the MRP can be seen between λ1 and λ2. The
contour lines lying on this frontier between are all in very close intervals for
all three plots.
In the center of the ternary maps as well as on the other two frontiers the
portfolios appear to be distributed better. The contour lines are separated
more and spread across the map. Again this demonstrates the importance
of the strict convexity of the objective functions.
Figure 18, 20 and 22 display the Diversification, the CVaR and the expected
return for the Dow-Jones index. The situation is not as dramatic as for the
LPP2005: The contour lines are more spread across the different frontier for
all three plots and also look reasonable in the center of the maps. This is
also the case for DAX as visible in figure 28 to 30
Ideally the method in equation 78 allocates the portfolio coherently as a func-
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Figure 17: Ternary map showing the levels of diversification for different
λ̄-values for the LPP2005. Here again λ3 = (1− λ1 − λ2).

tion of λ̄. The maps should show the same behaviour for different datasets
such that portfolios obtained for a distinct λ̄ value have the same character-
istics for different sets of available assets.
As already discussed the LPP2005 is a special case that illustrates the de-
ficiencies of the method in equation 78. However except for the frontier
between the MRP and the MCVP, all ternary plots show a similar behaviour
for the LPP2005 and the Dow-Jones index. Especially the CVaR and the
expected return allocation appear alike for the LPP2005 and the Dow-Jones
index.
If we compare the ternary maps of the Dow-Jones index, we find a very similar
behaviour of the method in the ternary maps. The contour lines mostly have
the same form. From this we conclude that the tri-criteria optimization
method allocates portfolios coherently in dependence of λ̄ for bigger sets of
available assets.
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Figure 18: Ternary map showing the levels of diversification for different
λ̄-values for the Dow Jones index.

10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

λ2

λ1 λ3

λ 2
%

λ1 %

λ
3

%

0.5

1.0

1.5

CVaR

level

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

LPP : CVaR

Figure 19: Ternary map showing the CVaR-levels for different λ̄-values for
the LPP2005.

51



10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

λ2

λ1 λ3

λ 2
%

λ1 %

λ
3

%

level

1.4

1.6

1.8

2

2.2

2.4

1.50
1.75
2.00
2.25
2.50

CVaR

DJI : CVaR

Figure 20: Ternary map showing the CVaR-levels for different λ̄-values for
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Figure 21: Ternary map showing the expected return levels for different λ̄-
values for the LPP2005.
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for the Dow Jones index for a period between March 20 2008 and June 25
2015.

5 Rolling-window analysis

We tested the method developed in the last chapter with a rolling-window
analysis in order to test the methods profitability over time. To test the
method we used a dataset of the stock components of the Dow-Jones index
between 2000-01-05 and 2015-07-08 and a dataset of the stock components
of the DAX index between 2003-01-07 and 2015-07-27.
The analysis was done for three months of estimation time and one month
of investment time: The first three consecutive months of daily returns of
the dataset are used as sample input for the algorithm in equation 78. The
portfolio weights are calculated from equation 78 for a grid of λ̄-values. Af-
terwards the accretion of each portfolio for the next consecutive month is
calculated and stored. Then procedure is repeated for a time window that is
shifted by one month such that the investment time of the newly calculated
portfolio is one month later than in the preceding step. This analysis was
done for a grid of λ̄-values
Figure 23 and 24 show the total accretion for each λ̄-strategy. As visible, both
maps show a similar behaviour in the profitability of the different λ̄-values. In
both maps the most profitable λ̄-strategies have λ1 ∈ [0.7, 0.95]. It appears
that the emphasis between λ2 and λ3 does not influence the profitability
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Figure 24: Ternary map showing the accrecation levels for different λ̄-values
for the LPP2005 for a period between 2005 and 2006.

much in this case.
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6 Runtime comparisons

In order to test the implementation of equation 78, we relied on the algebraic
modeling language AMPL8 that is built for large-scale optimization problems.
It supports multiple commercial and open-source solvers from the COIN-
OR project9 such as CBC, CPLEX, SNOPT and MINOS. Multiple runtime
performance comparisons are depicted below. The implemenation of equation
78 among other implementations is available in the function CVaRObj in the
R-package MOPP: Multi-Objective Portfolio Programming [8].
The calculations were done on a personal computer running Windows 7 -OS
with 8,00 GB memory and a Intel Core i7-2600 -processor with four 3.4 GHz
cores.
We tested the implementation for different numbers of available assets and
for different grid-widths of the λ̄-values. The runtimes can be seen in table
1 and 2.

Numer of assets 5 25 50 100

Runtime [s]

Minos 11.5 12.2 16.1 19.5
CPLEX 13.75 47.5 59.9 68.2
Gurobi 17.3 20.6 46.5 39.5
SNOPT 9.8 12.5 17.9 18.9

Table 1: Runtime comparisons of AMPL-solvers for multiple numbers of
available assets. The λ-grid that was used was of mesh width 1/30.

As visible, the runtime scales weakly with the number of available assets
and depends strongly on the solver. As expected, the runtime scales inverse
quadratically with the grid-with of the λ̄-values.

λ-grid 1/15 1/30 1/60 1/120
Runtime [s] Minos 4.2 13.9 61.2 218.9

Table 2: Runtime comparisons for different mesh widths. The number of
available assets was set to 50.

8www.ampl.com
9http://www.coin-or.org/download/binary/
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7 Conclusion and Outlook

The weighted sum method is an elegant and naturally comprehensible method
to optimize convex multi-criteria problems. For strictly convex problems it
finds only Pareto efficient solutions and is able to find the whole set of Pareto
efficient solutions.
The discussion of the weighted sum method showed that it is a valid approach
for portfolio optimization. The traditional portfolio problem is a bi-criteria
problem. It was shown in this thesis that it can be solved with the weighted
sum method for the expected return and a scenario-based risk measure as
objectives. Under reasonable conditions on the available assets, the scenario-
based risk measure is strictly convex and consequently the weighted sum
method finds all portfolios on the efficient frontier.
However the quality of the portfolio allocations by this method is not nec-
essarily coherent and depends on the number of available assets as demon-
strated with the LPP2005 index. For larger numbers of available assets, the
allocation appears to be more coherent.
The weighted sum method allows the optimization of multiple objectives
given that only one objective function is not strictly convex. As the portfolios
on the efficient frontier are not very diversified, we introduced a method
that adds the diversification as an additional objective. This method can be
implemented for an arbitrary scenario-based risk measure and a quadratic
diversification measure. With equation 78 we presented an implementation of
this method for the linearized CVaR and the Herfindahl index. This method
is able to find all Pareto efficient solutions under these three objectives.
Although the Herfindhal index adds convexity to the problem, the allocation
of portfolios in dependence of the parameter λ̄ again appears to be more
coherent for sets of many available assets than for smaller sets. In these
cases the diversification, the CVaR and the expected return are properties
that are distributed smoothly for different λ̄-values.
The rolling-window analysis showed that adding diversification as an ob-
jective indeed improves the profitability on a long term basis. The most
profitable portfolios are found close to the MRP but have significantly higher
accretion than the MRP.

Outlook

In the future this method can be used to further analyze dependencies be-
tween profitability of portfolios and their diversification, their CVaR and
their expected return as it enables an fast way of finding all efficient portfo-
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lios. The implementation of equation 78 is a quadratic problem and can thus
be efficiently solved by industrial solvers such as CPLEX and Minos. It is
therefore a fast way to analyze large sets of assets.
As explained, the objective functions can be easily stubstituted by other
scenario-based risk measures and quadratic diversification measures such as
the tail dependence diversification.
In principle it is possible to add additional objectives to the implemented
method. The condition on these objectives is that the objective functions
are strictly convex. With more objectives, connections between multiple
portfolio characteristics can be examined.
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A Appendix
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Figure 25: Visualization of the portfolio distribution for different λ values for
the unnormalized critical line algorithm.
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Figure 26: Positions of the different λ1 − λ2 -points.
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Figure 27: Visualization of the feasible set Y in the Risk-Return-space and
the position of the available assets for the DAX. The chosen risk measure is
the CVaR.
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Figure 28: Ternary map showing the diversification levels for different λ̄-
values for the DAX index.
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Figure 29: Ternary map showing the CVaR-levels for different λ̄-values for
the DAX index.
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Figure 30: Ternary map showing the expected return levels for different λ̄-
values for the DAX index.
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