
Imperial College London
Department of Mathematics

A Bayesian Approach to Human
Behaviour Modelling in

Computer Networks

Henry E. Clausen

CID: 01280376

Supervised by Prof. Niall Adams and Dr. Mark Briers

30th October 2017

Submitted in partial fulfilment of the requirements for the MSc in Statistics of
Imperial College London

The work contained in this thesis is my own work unless otherwise stated.

Signed: Date:

Abstract

Sophisticated cyber attackers often move through their targeted network by creating
a hierarchical chain of controlled computers and thereby create a strong correlation
between the activity on two different computers. To detect such connected activities,
an accurate model of network traffic that distinguishes between automated computer
traffic and different user activity states is necessary. In this work, we propose a novel
Bayesian model that identifies different states of activity in the arrival times of network
flow events on individual computers. Our model is based on the well-known Markov
modulated Poisson process, but overcomes its drawbacks with the modelling of network
data. Our model is embedded in a fast and scalable Bayesian inference framework. We
validate the relation of our results to actual user activity through a controlled experiment,
and additionally demonstrate the performance of our framework on flow data from 10
personal computers inside the LANL enterprise network.

Acknowledgements
I would like to thank Professor Niall Adams and Dr. Mark Briers for their expert advice,
excellent technical guidance, and encouragement throughout this project and beyond,
it was a pleasure to work with both of them. I also would like to thank Mr. Andy
Thomas for his general help and the collection of the network flow data. Finally, I would
like to express my gratitude for the exceptional support and encouragement my parents
provided during my studies.

2

Table of Contents

1. Introduction 5
1.1. Relation to cyber-security . 5
1.2. Contribution of this work . 7

2. Data Analysis 9
2.1. Network flow data . 9
2.2. Data used in this work . 10

2.2.1. Los Alamos National Laboratory data 11
2.2.2. Imperial College data . 12

2.3. Data cleaning . 15

3. Bayesian framework for the Markov-modulated Poisson process 17
3.1. Likelihood for the MMPP . 17
3.2. Likelihood for the batch MMPP . 19
3.3. Forward-Backward Algorithm . 20
3.4. Simulate full underlying Markov process 22
3.5. Gibbs Sampler . 23
3.6. A naive fitting attempt and analysis . 25

4. A hierarchical modification of the MMPP model 29
4.1. Model . 30
4.2. Modified Gibbs sampler . 32
4.3. Results and model comparison . 34
4.4. Result interpretation . 40
4.5. Results for LANL data . 42

5. Conclusion and outlook 45

Bibliography 47

A. Additional theory 49
A.1. Simulation from an end-point constraint CTMP on finite state space . . . 49
A.2. Possible extension incorporating flow durations 50

B. Additional plots 52

C. Plots for additional LANL computers 57

3

Notation table
Throughout this work, we will use the following notation:

[0, tobs] time window of observations
{Xt} Continuous-time Markov process that governs the MMPP
M dimension of the state space of {Xt}
Q Generator matrix of {Xt}
λ Poisson rates of the MMPP
ν ker(Q)
t′0 = 0
t′n+1 = tobs
{t′1, . . . , t′1} arrival times of events generated by the MMPP
{∆t′1, . . . ,∆t′n+1} inter-arrival times of events generated by the MMPP
{I1, . . . , In} accumulation intervals
{t0, . . . , tn} times defining the accumulation intervals
{z1, . . . , zn} Binned observations
{c1, . . . , cn} Binned sessions, a latent variable
yk Number of observed events generated from t′k
λY Poisson rate of y

4

1. Introduction

Computer usage can be diverse, and human induced activity on a computer is not con-
stant, but varies in correspondence to the particular task conducted on that computer.
In this work, we present a Bayesian framework that models a personal computer’s net-
work traffic in order to quantify different states in its usage. For this, we will develop
a new hierarchical model based on the Markov Modulated Poisson Process that iden-
tifies temporal patterns in the arrival of network flow events, and relates them to a
latent discrete process which represents the device state. Motivation for this work stems
primarily from current interests in cyber-defence, and our inference method is intended
to be a critical building block on which a broader cyber-security system would be based.
Moreover, this work is heavily related to current procedures in network modelling, for
which it might be of future interest.

1.1. Relation to cyber-security
In the wake of devastating personal information leaks, concerns over cyber-security are at
an all-time high. Sophisticated data breaches such as the attack on JP Morgan Chase in
2014 affect hundreds of million customers and inflicts tremendous financial, reputational,
and logistic damage (Walters, 2014). Cyber-security incidents increased by 38% in 2017,
and the global cost of cyber crime is estimated to reach $2 trillion by 2019 (Conteh and
Royer, 2016). The prevention of cyber crime is therefore a globally demanded necessity.
One reason for the recent rise of cyber crime is the increased use of sophisticated

techniques for the attack of specific targets. Attackers use customised social engineering
and custom-build malware to pass common security frameworks. Existing solutions
to commercial intrusion detection in computer networks are often based on detecting
signatures of previously uncovered and analysed attacks. Examples of such signatures
include file hashes1 of malicious software, blacklisted IP addresses and domain names,
and characteristics of known Command-and-Control (C&C) protocols. Detection of a
signature usually indicates an imminent intrusion and triggers investigation.

Adjusting existing attack procedures in order to shed previously identified signatures
is simple: A file hash can be altered by minor modifications in the program and IP
and domain addresses can be switched by changing servers. A sophisticated attack will
employ new, customized protocols and software that is fitted to the targeted computer
infrastructure, and thus will not show any previously identified signatures.

1A hash function encodes a file with a basic data structure into a number or string, which is known as
the file hash. Every file is uniquely identifiable with its file hash.

5

1. Introduction

A relatively new approach to intrusion detection is based on the accurate reflection
of normal behaviour in a computer network. When anomalous behaviour is observed,
alternative hypotheses can be formed that reflects attack behaviour. An intrusion is
therefore treated as a cumulation of improbable events. Such events can include previ-
ously unobserved edges between computers, new processes in combination with E-mail
clicks, or failed network logins. To build such a framework, accurate models of several
key characteristics of computer network dynamics are necessary in order to capture the
aspects that separate regular from irregular behaviour.

Pivoting and its relation to regular computer usage
Advanced persistent threats (APTs), which are responsible for many severe data breaches,
are characterised by the intruder maintaining a presence in the compromised network
for long-term control and data collection, possibly lasting months (Tankard, 2011). ATP
attacks often go undetected for a significant amount of time as attackers adopt a slow,
stealthy approach to evade detection while constantly interacting with the system under
attack.

Figure 1.1.: A typical pivoting attack chain. The attacker penetrates the network at a
weak point and moves through the network to find its target.

ATP attacks often circumvent strong firewalls which protect high-value assets, through
a technique called pivoting. This allows the attacker to expand their access from vul-
nerable computers to ones with higher protection. An attacker often gains a foothold
on a system via social engineering and highly targeted phishing emails to selected indi-
viduals without high-level access and the corresponding protection. The installation of
the deployed malware grants the attacker access to the victim’s system. The network
firewall will usually not block the communication with the C&C server because it origin-

6

1. Introduction

ated from a trusted source and was on a port2 used for virtually all encrypted Internet
connections. If the victim system is connected to the network, the attacker will identify
available ports and start running services on other systems. This allows the attacker to
gain control over new systems without operating a direct connection to the C&C server
(Neil et al., 2013). Pivoting therefore enables the attacker to explore protected intranets
in order to gain control over highly protected operator systems, and search and exfiltrate
intellectual property. Figure 1.1 depicts typical behaviour during a pivoting attack.
Communication between two devices itself is something common in computer net-

works. A hierarchical chain of controlled devices is not, and the detection of such is a
clear indication of an ongoing network intrusion. Neil et al. (2013) propose a Markov
model that quantifies the probability of multiple connected pairs of computers to de-
tect general anomalous chains in a network. The detection of a true hierarchical control
structure in which activity on one machine triggers activity on another one is more delic-
ate and requires the analysis of the amount and type of traffic transmitted along a chain.
A key aspect that is necessary to achieve this goal is the distinction of human induced
network activity from machine driven one, and the classification of different types of the
former. This work attempts such a classification on individual machine based on the
network traffic leaving and entering them. A future cyber-security system might relate
identified network activity on pairs of machines with the potential network connections
between them in order to identity pivoting behaviour.

1.2. Contribution of this work
The aim of this project is to build a framework that is able to infer the activity state of
computer users from the amount of network traffic that is generated during the usage
period. For this, we will discuss a well-established model, the Markov modulated Poisson
process (MMPP), which infers the state of a latent Markov process from the arrival
rates of piece-wise Poisson distributed data. We will expose the disadvantages this
model has regarding its application to network traffic, whose distribution deviates from
a Poisson distribution. We then proceed to develop a hierarchical model that relaxes
the requirement of Poisson distributed data and models the tail behaviour of network
traffic in a more accurate way.
Our model will be embedded in a fast and scalable inference framework that can

accurately identify the state of the latent Markov process. We will choose a fully Bayesian
approach in order to account for the significant amount of prior information available in
this issue.
A fundamental assumption in this work is that human activity governs the amount

of generated network traffic, and that the state of the user can be inferred from it. We
conducted a controlled experiment during which we gather flow data from phases with
varying user activity in order to confirm our assumptions, and to test our framework. We
will furthermore test our framework on network traffic originating from multiple selected
personal computers from an enterprise-sized computer network. Finally, we will discuss

2see Section 2.1

7

1. Introduction

the possibility of extending our developed model to include additional traffic quantities
and propose a concrete and promising model extension.

On the structure of this Thesis

The remainder of our work is organized as follows:

1. In Chapter 2, we introduce the concept of a flow and the information it carries.
We will then analyse the two data sets we are working with, point out their char-
acteristics, and eliminate possible problems in them.

2. Chapter 3 introduces the concept of the MMPP. We will show how to infer the lat-
ent Markov process from observations, and introduce a Gibbs sampling framework
by Fearnhead and Sherlock (2006) for parameter estimation. Finally, we point out
the shortcomings of a conventional MMPP framework.

3. In chapter 4, we develop a new model that is based on the idea of an MMPP and
demonstrate the advantages of this model over a conventional MMPP. We will then
extend the Gibbs sampler of Fernhead and Sherlock to fit our new model, and apply
it on the available data. Finally, we will discuss the accuracy and convergence of
our results, and relate it to human computer activity.

4. Chapter 5 provides a brief summary of our results, points out its applications, and
discusses possible extensions of our model for future work.

5. The appendix contains additional theory and plots as well as collection of results
of our framework applied to 10 computers from the LANL data.

8

2. Data Analysis

2.1. Network flow data
A flow is a summary of a directed connection between two computers, in which a sequence
of packets are sent from a source computer to a destination computer. Flows are most
often recorded as event streams in the prominent NetFlow format by the network routers,
with each flow event typically containing a time-stamp, the duration of the connection,
the IP addresses of the source, and the destination computers, the source and destination
ports, the protocol of the traffic, and the number of packets and bytes sent. An example
of two flow events in the Netflow format can be seen in Figure 2.1.

Time stamp Duration Protocol Src IP Src Port . . .
00:00:00.363 0.000 UDP 127.0.0.1 24920
00:00:00.459 0.000 UDP 192.168.0.1 22126

. . . Dst IP Dst Port Packets Bytes
192.168.0.1 22126 1 46 1
127.0.0.1 24920 1 80 1

Figure 2.1.: Example of two flow events in the Netflow format.

Internet protocols

An Internet communication protocol is a system of rules that allow end-to-end data
communication between two or more entities. It specifies how data should be packeted,
addressed, and transmitted. The two most prominent Internet protocols are the Trans-
mission Control Protocol (TCP), and the User Datagram Protocol (UDP). TCP provides
reliable, ordered, and error-checked packet streams and is therefore especially suitable
for World Wide Web, file transfers, or email. UDP provides provides connectionless
datagram services without a guarantee of delivery. It emphasizes reduced latency over
reliability, which is why it is preferred for real time streaming applications.

IP address

An Internet Protocol address (IP address) is a numerical label that serves as a location
address of a device that uses an Internet Protocol for communication. The IP address is

9

2. Data Analysis

used to identify both the network host of the computer network the device is connected
to, and the device location inside the network.

Ports

In computer networking, a port is an endpoint of communication in a network connec-
tion that identifies a specific type of network service transmitted in the connection. A
port is identified by a port number, and is always associated with an IP address and
the protocol type of the communication. Port, protocol, and IP together complete the
destination/origination network address of a communication session. Although princip-
ally any port number can be assigned to any port, 1024 well-known port numbers are
reserved by convention to identify specific service types. Prominent examples are Secure
Shell service (22), and the Hypertext transfer Protocol (80). The source port number is
usually of little relevance since the source computer does not have to be informed what
kind of network services it is sending.

Network flow logs are originally intended as information for network dimensioning,
and for Quality-of-Service and traffic control by the network provider. The inclusion of
IP address, transmission protocol and the connection port for both ends of a connection
in the flow event log allows a reconstruction of virtually all traffic inside a network.
Due to the richness of network information available, network flow logs are also one of
the main information sources in network intrusion detection, with both regular network
users’ as well as attackers’ actions leaving trace evidence in it.

Models simulating the arrival times, lengths, and sizes of network flow streams have
been extensively studied over the last twenty years. However, little attention was paid
on the traffic originating from individual computers as the main application of such
simulations is network planning and dimensioning of large-scale traffic. Many results
regarding the flow arrival or duration distribution are scale-invariant and transferable to
our data. We will discuss these results in more detail in Section 3.6.

2.2. Data used in this work
In this work, we look at a data set containing 16 consecutive days of network flow data
from the Los Alamos National Laboratory’s corporate, internal computer network (Kent,
2015). The network contains 17,684 devices and represents a typical enterprise network.
Our goal is to model different user activity states on personal computers inside the
network. However, the data does not contain labels to distinguish personal computers
from other devices of less interest, and we do not have data about the activity conducted
on the machines. Therefore, we have to apply logical and well-founded reasoning to
validate our findings. To acquire some ground truth about the activity on a human
controlled computer, we conducted a controlled experiment during which a user conducts
different selected activities on a single computer inside the Imperial College network. The
generated flow data was later collected at several key router locations.

10

2. Data Analysis

1e+05

2e+05

3e+05

0 2 4 6 8 10 12 14 16

Day

E
ve

nt
s

Figure 2.2.: Number of flow events in the LANL data, binned into 15 minute intervals.
Clear differences day and night activity and weekday and weekend activity
are visible.

We have mentioned above that flow data represents directed connections, i.e. a device
can send or receive flow events. For individual personal computers, the two directions
show a strong similarity in regards of the flow data distribution. We will therefore
restrict ourselves to looking at flow events departing the particular computer of interest.

2.2.1. Los Alamos National Laboratory data
The main data set that we look at in this work contains 16 consecutive days of network
data, collected from the Los Alamos National Laboratory’s (LANL) corporate, internal
computer network (Kent, 2015). The network consists of 17,684 computers which can
be identified through their individual label through the data. Figure 2.2 depicts the
number of flow arrivals in the network throughout time, binned into 15 minute intervals.
The LANL data contains only flows between internal devices, i.e. no connections to

external hosts are included. Furthermore, the data not only contains flow events from
personal computers, but from all devices connected to the network such as printers, IP
phones, or network interfaces. Since we aim to model human behaviour in this work, we
will restrict ourselves to devices that are subject to direct human control.
Based on observed patterns in the LANL data, in general we identify three main

network flow characteristics of human controlled computers in an enterprise network:

1. A pronounced working day pattern, visible in Figure 2.4 A, and to some extent in
Figure 2.2.

2. The distribution of flow events per minute in an hour has a high disorder, i.e. it
is not possible to identify a specific minute in the hour that receives more flows
than others. Examples of an ordered an a disordered hour distribution are shown
in Figure 2.3.

3. The number of contacted destination computers and destination ports per day lies
in a certain range (≈ 10− 20 destinations and ≈ 120− 140 destination ports).

11

2. Data Analysis

2 4
6

8
10
12
14
16

18
20

22
24

2628303234
36

38
40

42
44
46
48
50

52
54

56 580/60

Events dest. computer C5721A
2 4

6
8
10
12
14
16

18
20

22
24

2628303234
36

38
40

42
44
46
48
50

52
54

56 580/60

Events dest. computer C12903B

Figure 2.3.: Distribution of flow events per minute of the hour. The flow distribution of
C5721 shows a high order, i.e. flows are only sent during a specific minute
in an hour.

As mentioned above, there are no labels to distinguish personal computers from other
devices in the LANL data, and we therefore cannot validate the correctness of these
identified characteristics. Our assumptions are purely based on logical reasoning and
the inspection of individual machines.
We can quantify the disorder of the hourly distribution and the order of the day/night

distribution of flows from individual computers via the Shannon entropy:

S = −
∑
i

pi log(pi), (2.1)

where {p1, . . . , p60} is the empirical hourly flow arrival distribution, and {pday, pnight}
is the day/night flow distribution of a specific device. This quantification allows us
to select a number of computers that exhibit human behaviour. Plots of the device
distribution in the LANL data with respect to entropy and average daily contacted
destinations/ports can be seen in Figure B.1. Flow plots with two supposedly human
controlled devices and two other devices are depicted in Figure 2.4.

2.2.2. Imperial College data
The second data set we look at contains network flow data originating from a single
source IP address inside the Imperial College network during a controlled experiment
over a three-hour time span. The computer corresponding to this IP address1 is a college
computer running Microsoft Windows, and is accessible via user log-in. The purpose
of the experiment was to see how different activities on a computer influence the flow
arrival distribution. We therefore chose a diverse selection of activities that resemble
all possible user states in an accurate way. For this, we included phases with video and
social media consumption, or with surfing and information gathering, but also without
any user activity or with the user logged off. Log-in and log-off processes are suspected
to cause spikes in the activity, so we logged the user in and out frequently. The activity
schedule looks as following:

1during the three-hour time interval

12

2. Data Analysis

0

50

100

150

0.0 2.5 5.0 7.5 10.0

Days

E
ve

nt
s

Computer C13026A

0

10

20

30

0.0 2.5 5.0 7.5

Days

E
ve

nt
s

Computer C10086B

0

25

50

75

5.25 5.50 5.75 6.00 6.25 6.50

Days

E
ve

nt
s

Computer C9020C

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0

Days

E
ve

nt
s

Computer C14606D

Figure 2.4.: Flow events from four different source computers. Only computer C13026
and C9020 exhibit regular human working day behaviour.

0

200

400

600

14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00

time

E
ve

nt
s

Observations Imperial College Data

Figure 2.5.: Number of Imperial College flow events, binned into 5s intervals. The col-
oured intervals correspond to the different stages during the experiment.

13

2. Data Analysis

14:00 User log-in
Open Mozilla Firefox
Scrolling on www.facebook.com, opening occasional videos on this site

14:08 Open Google Chrome, close Mozilla Firefox
Scrolling on www.9gag.com

14:20 User log-out
User log-in
No further activity (no browser or other program open)

14:40 User log-out
User log-in

14:42 Open Mozilla Firefox, open several sites2

No further activity

15:00 Visiting www.soundcloud.com, Downloading three files with a total size of 2 GB
Watching several videos on www.youtube.com, all of which are several minutes
long.

15:20 Intense surfing, clicking from site to site
Listening to music on soundcloud.com

15:40 User log-off

16:00 User log-in

16:02 Open Mozilla Firefox
Playing multiplayer online game on www.splix.io

16:20 Establishing SSH-connection to bazooka.ma.ic.ac.uk
Sending Unix-commands via ssh
Occasional look-up of information using Mozilla Firefox

16:40 End of experiment

Figure 2.5 depicts the number of flow events binned into 5 second intervals during the
experiment. The colours represent the activity schedule. A discussion of their relation
will be done in Section 4.4.

Spikes

For both data sets, we observe several large spikes, standing out from the rest of the
data. In the Imperial College data, these spikes primarily stem from new web processes
being started on the computer which trigger many DNS requests to a single IP-address.
For instance, the largest spike in the Imperial Data at 15:24:34 contains 656 flow events,

2www.facebook.com, www.gmail.com, www.9gag.com, www.faz.de, www.outlook.com

14

www.facebook.com
www.9gag.com
www.soundcloud.com
www.youtube.com
soundcloud.com
www.splix.io
bazooka.ma.ic.ac.uk
www.facebook.com
www.gmail.com
www.9gag.com
www.faz.de
www.outlook.com

2. Data Analysis

0.000

0.025

0.050

0.075

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114

Seconds

E
ve

nt
s

Imperial College Data: event distribution within two−minute intervalsA

0

100

200

300

400

14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 17:00

time

E
ve

nt
s

Cleaned Observations Imperial College DataB

Figure 2.6.: Number of events per second distribution over two-minute intervals, and the
cleaned Imperial College flow data, binned into 5s intervals.

of which 297 are directed to the IP-address 155.198.142.8, all via UDP-port 53 (which
is responsible for DNS requests). The second most contacted IP address received only
32 flows. From the Imperial College data, we can observe that these only occur during
human interaction with the computer. The identification of these DNS-spikes as a new
device state in our framework might be of interest for a broader intrusion detection
framework.
Since the LANL data contains no external traffic, we do not observe DNS spikes. The

spikes we observe correspond to Kerberos-authentications3 via UDP ports 88 and 389,
which explains why they are most pronounced at the start of daily computer activity.

2.3. Data cleaning
A significant amount of a computer’s flow traffic is caused by strictly periodic commu-
nication. This sort of communication might manifest itself in periodic update requests
or flows restarting due to exceeding specific time limits. For example, a pattern of event
spikes in two-minute intervals is visible in Figure 2.5.
This periodic communication is highly deterministic and will alter the observed flow

arrival distribution without giving us any information about the state of the user. We
will attempt to remove this communication from our data.

Imperial College data

3An authentication service for open computer networks

15

2. Data Analysis

0

10

20

30

40

0.25 0.50 0.75 1.00 1.25 1.50

Days

E
ve

nt
s

Computer C9020

Figure 2.7.: Network flow excerpt of a LANL computer after cleaning, binned into 1
minute intervals.

In Figure 2.5 we observe spikes reoccurring every two minutes. Figure 2.6 A displays the
empirical4 distribution of flow events per second within a two-minute interval. Appar-
ently, events in second 103 behave significantly different from those happening in during
any other second. We therefore remove all events within second 103 in all two-minute
intervals. The cleaned observations can then be seen in Figure 2.6.

LANL data
Since the LANL data only contains internal traffic and we are therefore looking at
smaller flow arrival rates, we do not observe pronounced periodic spikes in the set of
selected LANL computers. We can rather find a set of destination hosts and ports
used in the network that only communicate in very periodic manners, and exclude their
connections from the flow data sets we are investigating. As described in Equation
2.1, we can calculate the Shannon entropy of the minutely and hourly distribution for
every destination port and computer in the network to identify ports with periodic
communication. Figure 2.7 depicts an excerpt of computer C9020 after the cleaning.

Chapter summary
This chapter introduced the notion of a network flow, explained the different parts in
a flow event log, and emphasized their importance for cyber-security. We discussed the
characteristics of computers in the LANL network data and showed how to filter it for
computers that are of interest to us. We then explained the difficulty of validating our
validating our model results without the knowledge about the activity taking place on
these computers, and conducted a controlled experiment to gather data that relates
network traffic with human activity states. Finally, we discussed problematic points in
our data and how to remove them.

4averaged over all two-minutes intervals of the data set

16

3. Bayesian framework for the
Markov-modulated Poisson process

A Markov-modulated Poisson process (MMPP, also called Markovian arrival process)
is a Poisson process whose intensity depends on the current state of an independently
evolving continuous time Markov chain with finite state-space. An example of an MMPP
is a single-molecule fluorescence experiment where the molecule alternates between two
possible states according to a Markov chain, and the arrival rate of emitted photons at
a receptor depends on the current state of the molecule (Burzykowski et al., 2003).
Usually, the underlying Markov process is unobserved, and MMPP frameworks are

employed to infer the state of the Markov process from the observed arrival data. In a
typical context, both the state of the Markov process as well as the specific parameters of
the MMPP are unknown and have to be estimated while the number of states is assumed
to be known. Multiple sources showed that the estimation of the parameters can be done
via Expectation-Maximization (EM), and the chain states can be sampled afterwards
(Breuer, 2002; Rydén, 1996). Here we focus on a completely Bayesian framework that
follows Fearnhead and Sherlock (2006) to sample both the parameters as well as the
process states directly using Gibbs sampling. Our framework will use a batch MMPP
which takes binned data as input rather than raw arrival timestamps.

3.1. Likelihood for the MMPP
We begin by defining an M-state MMPP that evolves during a defined time span.

We define a time window of observation [0, tobs]. Let {Xt} for t∈ [0, tobs] be a (hidden)
discrete Markov process evolving inside this time window on a state space of cardinality
M . Let Q be the infinitesimal generator of {Xt}, with Qii = −∑j 6=iQij , Qii ≤ 0. The
stationary distribution of {Xt} is given by ν = ker(Q). The transition probability of the
Markov process transitioning from state j to state i after time t is given by

Pij(t) = P (Xt = i|X0 = j) = exp(Qt)ij i, j ∈ {1, . . . ,M}. (3.1)

Let λ , {λ1, ..., λM} be the Poisson process rates. Let N(t) be a Poisson process with
rate λ(t) = λi=Xt , i.e. while X stays in state i, events occur with rate λi.

Let {t′1, ..., t′l} be the arrival times of N(t) with l , N(tobs), and define t′0 = 0, t′l+1 =
tobs. Define the interarrival times ∆t′k = t′k − t′k−1, k ∈ {1, ..., l + 1}.

17

3. Bayesian framework for the Markov-modulated Poisson process

At this point, we are interested in the evolution of the Markov process at the arrival
times. For this, we need the following probability:

P
(0)
ij (t∗) = P

(
there are no arrivals in (0, t∗) and Xt∗ = i |X0 = j

)
. (3.2)

We can easily derive this probability by defining a meta-Markov process {Wt} on the
space {1, ...M,M + 1} on (0, t∗). Let {t′1, t′2, . . . } be the arrival times during (0, t∗),
possibly being empty. t′1 is the time the first event occurs. {Wt} is defined as follows:

Wt =


Xt, 0 ≤ t < t′1

M + 1, t′1 ≤ t
t ∈ [0, t∗], (3.3)

i.e. Wt mirrors Xt until the first event happens, then it jumps into the added state and
stays there. Let λ = diag(λ). The infinitesimal generator of this process is given by

Gw =
(

Q−Λ λ
0 0

)
. (3.4)

Note that the transition rates to leave the state M + 1 are equal to zero, and the
transition rates of jump to state M + 1 are given by λ. The full transition matrix of
{Wt}

PWij (t∗) = P (Wt = i|W0 = j)
= exp(Gwt)

=
(

exp{(Q−Λ)t} (Q−Λ)−1[exp{(Q−Λ)t} − I]λ
0 1

)
.

(3.5)

From this we see that our desired probability is given by

P
(0)
ij (t∗) = exp{(Q−Λ)t∗}ij . (3.6)

We can now compute likelihood of the interarrival time ∆t′k conditional on Xt′
k
, Xt′

k−1
:

P (∆t′k|Xt′
k

= i,Xt′
k−1

= j) =
P (∆t′k, Xt′

k
= i|Xt′

k−1
= j)

P (Xt′
k

= i|Xt′
k−1

= j)

= exp{(Q−Λ)∆t′k}ijλj
exp{(Q−Λ)∆t′k}ij

= λj

(3.7)

The total likelihood of the arrival times {t′1, . . . , t′l+1} (this now includes the constraint
of t′k = tobs) is therefore given by

18

3. Bayesian framework for the Markov-modulated Poisson process

P
(
{t′k}

)
=
∑
{it′

k
}
P (Xt′0

= it′0)P (t1, Xt′1
= it′1 |Xt′0

= it′0) . . .

. . . P (t′l+1, Xt′
l+1

= it′
l+1
|Xt′

l
= it′

l
)

= νT exp{(Q−Λ)∆t′1}λ...
. . . exp{(Q−Λ)tn}λ exp{(Q−Λ)∆t′l+1}1.

(3.8)

3.2. Likelihood for the batch MMPP
When dealing with network flow events, two arguments speak against the use of raw
arrival times:

1. The resolution with which flow arrival times are recorded is often in second in-
tervals. Flows recorded within the same second therefore do not have a timely
separation, which leads to serious deviation from a Poisson process

2. Within an enterprise network, typically between 107 and 1010 flow events are ob-
served per day. The scalability of any operations acting on the stream of network
flows is therefore of particular interest. Consequently, we are interested in an ap-
proach that bins multiple flow events together in order to reduce the necessary
number of operations.

These two arguments make it particularly attractive to look at network flow arrivals
in the format of accumulation intervals instead of the raw arrival times. These are a set
of intervals {I1 = [t0 = 0, t1), ..., In = [tn−1, tn = tobs)} of equal length t∗ , ti − ti−1.
Associated with each interval is a count zi = N(ti) − N(ti−1) of the number of arrival
events during interval Ii.

Since we only observe the accumulated arrival events at the interval times, we are now
interested in the following probability:

P
(zi)
jk = P

(
there are zi arrival events in (0, t∗) and Xt∗ = k |X0 = j

)
. (3.9)

Similar as before, we can derive this probability by defining a meta-Markov process
Vt. Let zmax = max(zi). Define the new (M · zmax + 1)-dimensional state space S =
(1(0), ...,M (0), 1(1), ...,M (1), ..., 1(zmax), ...,M (zmax), 1∗). Let {t′1, ..., t′zmax , t

′
zmax+1, ...} be a

(again possibly empty) set of arrival times inside [0, tobs].
{Vt} is defined as follows:

19

3. Bayesian framework for the Markov-modulated Poisson process

Vt =



X
(0)
t , 0 ≤ t ≤ t′1

...
X

(i)
t , 0 ≤ t′i < t′i+1

...
1∗, t′zmax+1 ≤ t

t ∈ (0, t∗). (3.10)

The state of Vt reflects both the state of Xt and the number of occurred events until this
number exceeds zmax (which does not occur in the observations).
The infinitesimal generator for {Vt} is given by

GV =


Q−Λ Λ 0 . . . 0 0

0 Q−Λ Λ . . . 0 0
...

...
...

...
...

...
0 0 Q−Λ λ
0 0 0 0

 (3.11)

The transition matrix P (zi)
ij is now given by

P
(zi)
jk (t∗) = P

(
Vt∗ = k(zi) |V0 = j(0)

)
=
[
exp(GVt

∗)
]
j,k+zi·M

(3.12)

Since the number of observed events is already encoded in the end-state of Vt, the
likelihood of one accumulation interval is given by

PQ,λ(zi|Vt∗ = k(zi), V0 = j(0)) = 1. (3.13)
The likelihood of the observed data {z1, ..., zn} is therefore given by

PQ,λ
(
{zi}

)
= νT

(n∏
i=1

P (zi)
)
1, (3.14)

where

P (zi) =


[
exp(GVt

∗)
]
1,1+zi·M

. . .
[
exp(GVt

∗)
]
1,M+zi·M...

...
...[

exp(GVt
∗)
]
M,1+zi·M

. . .
[
exp(GVt

∗)
]
M,M+zi·M

 . (3.15)

3.3. Forward-Backward Algorithm
The recursive form of the likelihood in Equation 3.8 and 3.14 shows that we can formulate
the MMPP as a discrete hidden Markov model (HMM). Inferring the hidden Markov
chain in a HMM is not trivial and subject to extensive research. For discrete HMMs, it
is fortunately always possible to sample the Markov chain directly using the so called
Forward-Backward algorithm (Baum, 1972; Devijver, 1985).

20

3. Bayesian framework for the Markov-modulated Poisson process

XIi−1 XIi
XIi+1

zizi−1 zi+1

{µk} {µk} {µk}Pois Pois Pois

Figure 3.1.: Graphical model for the batch MMPP.

The backward-part of the Forward-Backward algorithm calculates the posterior dis-
tributions of the Markov process conditional on the previous element while the forward
samples each element sequentially. We will explain the important steps in the context
of the batch Markov modulated Poisson process. For a more general description see
(Baum, 1972; Fearnhead and Sherlock, 2006).
Again, let {t0, ..., tn} be the times defining the accumulation intervals, and let t∗ ,

ti − ti−1 be the interval length and zi = N(ti) − N(ti−1) be the event count of each
interval.
Define

A(k) = P ({zk, ..., zn}, Xtn |Xtk−1), k ∈ {1, ..., n}. (3.16)

For k = n, we have

A(n)
ij = P (zn, Xtn = j|Xtn−1 = i) =

[
exp(GVt

∗)
]
i,j+zn·M . (3.17)

We can then calculate A(k) via backward recursion:

A(k) =
[
exp(GVt

∗)
]
1:M,1:M+zk·M

A(k+1). (3.18)

For large number of observations intervals, the direct calculation of A(k) would not be
numerically stable. Since we are only interested in the relative probabilities of A(k) in
order to sample, we therefore normalize each A(k) with the max norm1.

Forward-sampling can then be done as follows: We can sample the initial state of the
Markov process using the stationary distribution of the process:

P
(
Xt0 = s|{z1, ..., zn}

)
=
µs
[
A(1)1]s

µTA(1)1
. (3.19)

We can then proceed to sample Xt1 , ..., Xtn−1 :

P
(
Xtk = s|{z1, ..., zn}, Xtk−1 = sk−1

)
=
[
exp(GVt

∗)
]
sk−1,s+zk·M

[
A(k+1)1

]
s[

A(k)1
]
sk−1

. (3.20)

1The maximal element of a matrix. Any other reasonable matrix norm would work too.

21

3. Bayesian framework for the Markov-modulated Poisson process

t

1 1 2 1 2

t0 t1 t2 t3 t4

(a)

t

1 1 2 1 22 1 2 1 2 1 2 1 2 1 1
t0 t1 t2 t3 t4

(b)

Figure 3.2.: First, simulate the chain state at the interval start and end times using
the Forward-Backward algorithm (a); for each interval then simulate the
evolution of {Xt} inside the interval conditional on the endpoints (b).

Finally, we can sample Xtn=tobs :

P
(
Xtn = s|{z1, ..., zn}, Xtn−1 = sn

)
=
[
exp(GVt

∗)
]
i,j+zn·M . (3.21)

3.4. Simulate full underlying Markov process
With the Forward-Backward algorithm, we are able to sample the state of the Markov
process {Xt} at the times {t0, ..., tn}. We are now interested in sampling the whole
Markov process, i.e. we want to sample all times at which a state transition happens.
To do this, we can look at the time interval Ik = [tk, tk+1] (which is of length t∗) and
sample the state transitions conditional on Xtk , Xtk+1 . We have to condition on the fact
that during the interval, zk events take place:

P
(
{Xt}, there are zk Y-events in (tk−1, tk)|Xtk−1 = i, Xtk = j

)
= P

(
{Vt, t ∈ (tk−1, tk)}|Vtk−1 = i(0), Vtk = j(zk)

)
.

(3.22)

where we used the definition of {Vt} and its generator from Equation 3.10 and 3.11. We
are therefore simply looking at the evolution of the Markov-process {Vt} with specified
end-points.

Drawing sample paths for endpoint-conditioned continuous time Markov processes
is not trivial. Two common techniques to solve this problem are Modified Rejection
sampling and Uniformization sampling. A detailed description of both algorithms and
their particular advantages and disadvantages is given in Section A.1, and (Hobolth and
Stone, 2009). We will use both techniques where appropriate during the sampling of
{Vt}, depending on the particular endpoints Vtk , Vtk+1 , to take full advantage of both
methods. For more details, again see Section A.1.

22

3. Bayesian framework for the Markov-modulated Poisson process

The sampled trajectory of {Vt} contains both a sampled trajectory of {Xt} as well
as a sample of the exact arrival times {t′1, ..., t′l} of all flows2. Figure 3.2 resembles the
procedure of sampling the full trajectory of {Xt}.

3.5. Gibbs Sampler
We have demonstrated how to sample both {Xt} and {t′1, ..., t′l} conditional on the
observed counts {z1, . . . , zn} and the parameters Q,λ. In other words, we are able
to sample from

P
(
{Xt}, {t′1, ..., t′l}|{z1, . . . , zn},Q,λ

)
. (3.23)

We will now follow an approach proposed by Fearnhead and Sherlock (2006) to im-
plement an exact Gibbs sampler for

P
(
{Xt}, {t′1, ..., t′l},Q,λ|{z1, . . . , zn}

)
. (3.24)

The likelihood of {Xt} and {t′1, .., t′l} is given by

L
(
{Xt}, {t′1, .., t′l}|Q,λ

)
∝ νXt′0

M∏
i=1

(
λni
i exp(−λit̃i)

∏
j 6=i

q
rij

ij exp(−qij t̃i)
)

(3.25)

where
t̃i ,

∫ tobs

0
1Xt=i dt (3.26)

is the time spent in state i,

ni ,
l∑

k=1
1Xt′

k
=i (3.27)

is the number of arrival events taking place while Xt = i, and

rij , |{tk, Xtk = i and Xtk+ = j}| (3.28)

is the number of transitions from state i into state j.
If we employ a Bayesian framework, it is possible to calculate the posterior distribu-

tions of Q,λ conditional on {Xt} and {t′1, ..., t′l}:
We impose a Gamma-prior on λi with hyper-parameters αλ,i and βλ,i:

2Given the fact that we record flow events with a timestamp, the sampling of the flow arrival times
might seem unnecessary and one might question the benefit of using accumulation intervals in our
framework. However, despite the fact that the precision of those timestamps is not high enough for
a working MMPP framework, we benefit a lot computationally by applying the Forward-Backward
algorithm only on the accumulation intervals rather than all interarrival times. Furthermore, the use
of a coherent interval length accelerates the sampling of {Xt} immensely as described in Section A.1
(please keep in mind that else we would have to sample {Xt} during each interarrival time).

23

3. Bayesian framework for the Markov-modulated Poisson process

λi ∼ Γ(αλ,i, βλ,i) (3.29)

Likewise,

qii ∼ Γ(αq,i, βq,i) (3.30)

For qi 6=j , we impose a Dirichlet prior with hyper-parameter αD,i:

(q1,i, ..., qi−1,i, qi+1,i, ..qM,i)T
qii

∼ Dir(αD,i) (3.31)

The posterior distributions are then given by

λi|{Xt}, {t′1, ..., t′l} ∼ Γ(αλ,i + ni, βλ,i + t̃i) (3.32)

Algorithm 1: Gibbs sampler for batch MMPP
Data: {z1, . . . , zn}
Initialize:

1. Sample:
λ

(0)
i ∼ Γ(αλ,i, βλ,i)
q

(0)
ii ∼ Γ(αq,i, βq,i)

(q1,i, ..., qi−1,i, qi+1,i, ..qM,i)T
(0) ∼ Dir(αD,i) · qii

for a ∈ {1, . . . , number of desired samples} do

1. Sample {Xt1 , . . . , Xtn}(a) recursively using the Forward-Backward algorithm
conditional on {z1, . . . , zn}(a), λ(a−1), and Q(a−1) as described in Equation 3.20

2. Sample {Xt}(a) and {t′1, . . . , t′l}(a) conditional on {Xt1 , . . . , Xtn}(a) using
Equation 3.22

3. Calculate t̃(a)
i , n(a)

i , and r(a)
ij with equations 3.26-3.28 from {Xt}(a) and

{t′1, . . . , t′l}(a)

4. Sample:
λ

(a)
i ∼∼ Γ(αλ,i + ni,

(a) βλ,i + t̃
(k)
i)

q
(a)
ii ∼ Γ(αq,i +∑

j 6=i r
(a)
ij , βq,i + t̃

(a)
i)

(q1,i, ..., qi−1,i, qi+1,i, ..qM,i)T
(a) ∼ Dir(αD,i + ri)(a) · qii

24

3. Bayesian framework for the Markov-modulated Poisson process

qii|{Xt}, {t′1, ..., t′l} ∼ Γ(αq,i +
∑
j 6=i

rij , βq,i + t̃i) (3.33)

(q1,i, ..., qi−1,i, qi+1,i, ..qM,i)
qii

|{Xt}, {t′1, ..., t′l} ∼ Dir(αD,i + ri) (3.34)

where ri = (r1,i, ..., ri−1,i, ri+1,i, ..rM,i)T .
We can now sample from

P
(
{Xt}, {t′1, ..., t′l}|{z1, . . . , zn},Q,λ

)
(3.35)

as well as from

P
(
Q,λ|{Xt}, {t′1, ..., t′l}, {z1, . . . , zn}

)
. (3.36)

This now allows the implementation of a direct Gibbs sampler in order to explore

P
(
Q,λ, {Xt}, {t′1, ..., t′l}|{z1, . . . , zn}

)
. (3.37)

An implementation of this Gibbs sampler is described in Algorithm 1.

3.6. A naive fitting attempt and analysis
The above described Gibbs sampler principally allows us a direct attempt to identify
different machine states: We can define appropriate hyperparameters for Q and λ,
choose an appropriate number of states, and employ Algorithm 1 on the binned data
{z1, . . . , zn} to sample

{
{Xt},Q,λ

}
|{z1, . . . , zn}. As this is only a demonstration of the

flaws a simple MMPP model has, we will discuss the choice of prior hyperparameters
and number of states in Section 4.3.
We run Algorithm 1 to generate 500 samples of

{
{Xt},Q, λ

}
|{z1, . . . , zn} for both the

Imperial College data as well for a selected machine from the LANL data. Figure 3.3
shows excerpts of the sampled {Xt}-distributions, with a detailed plot description in the
figure caption. Figure 3.4 depicts the corresponding samples of the process rates Qii.
As visible in the plots, the sampler is able to identify a rough structure in the data.

Periods with no or little activity can be distinguished from very active periods, and the
isolated peaks described in Section 2.2 are accurately identified as state 4 resp. state 5
periods.

However, the plots indicate that the predictions of the underlying Markov process
are very unstable: The overall uncertainty of the sampled states is immense during the
majority of the observed time periods, making the identification of one distinct state
at each point in time impossible. Furthermore, with the exception of Q1 and Q2 for
the LANL data, the sampled rates for Qi are unreasonably high for both data sets,
corresponding to an average lifetime of each state in the range of seconds. An accurate

25

3. Bayesian framework for the Markov-modulated Poisson process

0

50

100

150

E
ve

nt
s

Observations Imperial College Data

1

2

3

4

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

14:30 15:00 15:30

time [hour]

U
nc

er
ta

in
ty

A

0

5

10

15

20

25

E
ve

nt
s

Observations LANL Data, Computer C9020

1

2

3

4

5
P

ro
ce

ss
 s

ta
te

Estimated Markov process

0.0

0.2

0.4

0.6

6.2 6.5 6.8 7.1 7.4

time [day]

U
nc

er
ta

in
ty

B

Figure 3.3.: Binned flow data (top), 500 samples of {Xt} (using Algorithm 1) (middle),
and uncertainty of the inferred state. Plot A depicts an excerpt of the
Imperial College Data, Plot B and excerpt of a machine from the LANL
data. The blue line indicates the sample mode at each point in time while
the thickness of the red lines indicates the amount of samples in each state.
The uncertainty is calculated by 1 − αti where αti is the fraction of the
sample mode of all samples at time ti.

26

3. Bayesian framework for the Markov-modulated Poisson process

0.00

0.01

0.02

0.03

0.04

40 60 80

Rate [1/hours]

de
ns

ity
Imperial College Data Q11A

0.0000

0.0025

0.0050

0.0075

0.0100

300 400 500

Rate [1/hours]

de
ns

ity

Imperial College Data Q22B

0.000

0.001

0.002

0.003

800 1000 1200 1400 1600

Rate [1/hours]

de
ns

ity

Imperial College Data Q33C

0.000

0.001

0.002

0.003

0.004

500 750 1000 1250

Rate [1/hours]

de
ns

ity

Imperial College Data Q44D

0.0

0.5

1.0

1.5

2.0

0.9 1.2 1.5

Rate [1/days]

de
ns

ity

LANL Data Q1E

0.00

0.05

0.10

0.15

0.20

0.25

0 3 6 9

Rate [1/days]

de
ns

ity

LANL Data Q2F

0.000

0.005

0.010

100 150 200 250

Rate [1/days]

de
ns

ity

LANL Data Q3G

0.000

0.003

0.006

0.009

0.012

200 300 400 500

Rate [1/days]

de
ns

ity
LANL Data Q4H

0e+00

1e−04

2e−04

3e−04

6000 8000 10000 12000 14000

Rate [1/days]

de
ns

ity

LANL Data Q5I

Figure 3.4.: Sampled Markov process decay rates for both the Imperial College and the
LANL data.

model of human computer usage cannot agree with such predictions. Therefore, these
results indicate that a simple MMPP model is not capturing the nature of network traffic
properly.

Network arrivals are often modeled as Poisson processes for analytic simplicity, even
though a number of traffic studies have shown that packet or flow interarrivals are
not exponentially distributed. The fact that network traffic shows heavy tail beha-
viour, Long Range Dependence3 (LRD), and self-similarity4 is widely accepted, and has
been discussed in a vast literature (Leland et al., 1993; Muscariello et al., 2005; Paxson
and Floyd, 1995). Recent work argues convincingly that network traffic is much better
modeled using statistically self-similar processes. However, such processes have much
different theoretical properties than a Poisson process, and currently none of the math-
ematical models that present LRD or self-similarity allow an analytical solution when
used for network traffic generation.
In this work, we are attempting to model behaviour from network flows for individual

computers. Scale-invariant concepts such as self-similarity and LRD itself are therefore
not essential to our modelling process as traffic from single machines has natural limits.
However, what we should be concerned with are the large tails observed in the flow
arrival distributions (Figure 4.2 depicting the tail behaviour will be presented in Section
4). These tails cannot be accurately modelled by a Poisson distribution whose variance
is equal to its mean. Consequently, in a simple MMPP model tail observations receive

3A process is considered to have long-range dependence if its temporal dependence decays more slowly
than an exponential, typically a power-like decay.

4A self-similar process behaves the same when viewed at different scales of time.

27

3. Bayesian framework for the Markov-modulated Poisson process

a disproportionately low likelihood, which in turn causes state changes in the sampled
MMPP for observed tail event. Therefore, it is crucial to take the shape of the observed
event arrival distribution into account.

Chapter summary
In this chapter, we discussed the advantages of accumulation intervals with regards to
flow data and computational scalability. We introduced the concept of the MMPP and
the batch MMPP, and developed a framework to sample the latent Markov process with
given parameters Q and λ using the Forward-Backward algorithm and an appropriate
mixture of Uniformization sampling and Rejection sampling. We showed how to build a
Gibbs sampler for P

(
{Xt},Q,λ|{z1, . . . , zn}

)
. Finally, we demonstrated the shortcom-

ings of a conventional MMPP approach on our data, and argued that the reason for this
is a deviating tail behaviour of the flow arrival distribution. In the next chapter, we will
develop a model that models these tails in an accurate way.

28

4. A hierarchical modification of the
MMPP model

The advantage of Markovian models like MMPPs lies in the possibility of exploiting
powerful analytical techniques to predict the network performance. As mentioned above,
network traffic is more accurately modelled by statistically self-similar processes, which
in turn do not allow for an analytical solution, even in simple traffic simulations.
Muscariello et al. (2005) suggest the use of a hierarchical Poisson model in order gen-

erate pseudo-LRD characteristics that match those measured on the Internet while still
maintaining analytical tractability. The principle idea of their approach is to introduce a
latent variable called a session which can be seen as an individual interaction of the per-
son with the computer such as the opening of a specific website. Sessions are generated
by an MMPP and trigger time-limited Poisson processes with events that are observed
as flows. Muscariello et al. show that simulations generated by this model approximate
the tail behaviour of flow data coherently. However, in their work they neither provide
a general approach to fit the involved parameters nor a way to calculate or sample from
P
(
{Xt}|{z1, . . . , zn}

)
, which eventually is our ultimate interest in this work.

We now propose a model that adopts the idea of sessions acting as a latent variable,
and that benefits from the use of accumulation intervals rather than raw arrival times.
For this, we are drawing heavily from the batch MMPP framework discussed in Section
3.2. We will then embed our model in a simple, yet effective Bayesian framework that
is capable of inferring the interaction state at a particular computer.

XIi−1 XIi
XIi+1

cici−1 ci+1

{λk} {λk} {λk}Pois Pois Pois

zizi−1 zi+1

λY λY λY

shifted Pois shifted Pois shifted Pois

Figure 4.1.: Graphical model for our proposed hierarchical MMPP.

29

4. A hierarchical modification of the MMPP model

4.1. Model
As before, let {Xt} for t∈ [0, tobs] be the unobserved discrete Markov process with in-
finitesimal generator Q, and let N(t) be a Poisson process with rate λ(t) = λi=Xt . In
contrast to the batch MMPP framework that we discuss in Section 3.2, N(t) does not
generate flow events, but unobserved events called sessions in reference to Muscariello
et al.. Let {I1 = [t0 = 0, t1), ..., In = [tn−1, tn = tobs)} be our accumulation intervals,
and let ck , N(tk)−N(tk−1) be the number of sessions in Ik.
Upon generation, session si instantaneously generates yi events that are observed. yi ∈

N>0 is a discrete random variable with probability distribution P (yi|Θ) with Θ being the
specific parameters. The generation of multiple flows at once rather than at staggered
times is obviously a false assumption, but will be essential for analytical computability
in our framework. However, since we are observing flow events in accumulation intervals
instead of their raw timestamps, we avoid potential problems caused by this assumption.
P (yi|Θ) can in principle be any discrete probability distribution. In this work we will

assume that yi follows a shifted Poisson distribution:

yi − 1|Θ ∼ Poiss(λY). (4.1)

The choice of a shifted Poisson distribution is beneficial since it allows for conjugate
priors on the parameter λY . Alternatives like geometric distributions were considered
as well, but the shifted Poisson distribution provided the most promising results. The
shift introduced ensures that every session generates at least one flow event.
The flow events zk observed during interval Ik are now defined as

zk ,
l∑

i=1
yi1tk−1<t

′
i≤tk . (4.2)

Since the sum of Poisson-distributed variables is also Poisson-distributed, we can easily
derive P (zk|ck, λY) to be

P (zk|ck, λY) = (ckλY)zk−ck exp(−ckλY)
(zk − ck)!

. (4.3)

Figure 4.2 A depicts an excerpt of the Imperial College data during which the flow
arrival rate supposedly stays constant, while 4.2 B shows the distribution of the ob-
served counts during each interval. Plots C/D and E/F show a comparison with events
generated from a Poisson process and from our proposed hierarchical Poisson model. λ
for the Poisson process was chosen such that the data generated has the same mean as
the Imperial College interval, while λ and λY for the hierarchical model were chosen to
adjust both the mean and the variance.
Table 4.1 shows the first three moments of the the data depicted in Figure 4.2. It is

clear that our hierarchical Poisson model is better suited to imitate the tail behaviour
of the observed data distribution.

30

4. A hierarchical modification of the MMPP model

Moment IC data Poisson hierarchical Poisson
mean 0.73 0.73 0.71

variance 1.92 0.74 1.92
skewness 3.11 1.33 2.91

Table 4.1.: Comparison of the first, second, and third moment for the data depicted
Figure 4.2.

0

2

4

6

8

10

14:45 14:50 14:55

time

E
ve

nt
s

Imperial College DataA

0.01

0.10

0.20

0.40

0.60

0 2 4 6 8 10 12

Events during Interval

de
ns

ity

B

0

1

2

3

4

14:45 14:50 14:55

time

E
ve

nt
s

Poisson processC

0.01

0.10

0.20

0.40

0 2 4 6 8 10 12

Events during Interval

de
ns

ity

D

0

2

4

6

8

14:45 14:50 14:55

time

E
ve

nt
s

hierarchical PoissonE

0.01

0.10

0.20

0.40

0.60

0 2 4 6 8 10 12

Events during Interval

de
ns

ity

F

Figure 4.2.: Plot A shows an interval of the Imperial College flow data during which the
flow arrival rate was supposedly constant (bin size 2 seconds). Plot B shows
the corresponding empirical flow count distribution. Plot C and D show
simulated arrivals from a Poisson processes with the same mean as the data
in A. Plot E and F show simulated arrivals from the hierarchical Poisson
model discussed in section 4.

31

4. A hierarchical modification of the MMPP model

4.2. Modified Gibbs sampler
To implement a Gibbs sampler for our model, we have to be capable of sampling from

1. P ({Xt}|{z1, . . . , zn}, {c1, . . . , cn},Q,λ, λY)
2. P ({c1, . . . , cn}|{z1, . . . , zn}, {Xt},Q,λ, λY)
3. P (Q,λ, λY |{z1, . . . , zn}, {c1, . . . , cn}, {Xt})

(4.4)

1. Since we {z1, . . . , zn} and {Xt} are conditionally independent, we can rewrite

1. P ({Xt}|{z1, . . . , zn}, {c1, . . . , cn},Q,λ, λY)
= P ({Xt}|{c1, . . . , cn},Q,λ)

(4.5)

from which we can sample in the same manner as described in Section 3.22.

2. We define

λIk
,
(M∑
i=1

∫ tk

tk−1
1Xt=i · λi dt

)
. (4.6)

Since the increments of a Poisson process are independently Poisson-distributed, the
number of sessions in Ik conditional on {Xt} is Poisson-distributed with rate λIk

:

P (ck|{Xt, t ∈ Ik},λ) =
λck
Ik

exp(−λIk
)

(ck)!
(4.7)

This allows us to calculate the posterior distribution of ck:

2. P (ck|zk, {Xt, t ∈ Ik},λ, λY)
∝ P (ck|{Xt, t ∈ Ik},λ)P (zk|ck, λY)

=
λck
Ik

exp(−λIk
)

(ck)!
(ckλY)zk−ck exp(−ckλY)

(zk − ck)!

(4.8)

Since P (zk < ck|ck) = 0, this expression is easily normalizable. We can therefore also
sample the sessions counts {c1, . . . , cn} conditional on {Z1, . . . , Zn}, {Xt}, λ and λY .

3. We saw that zk− ck is Poisson-distributed with rate ckλY . If we impose a Gamma-
prior on λY , its posterior is given {zk} and {ck} is again Gamma-distributed:

λY |{zk}, {ck} ∼ Γ(αλY
+ zk − ck, βλY

+ zk), (4.9)

where αλY
and βλY

are the hyperparameters.
The prior and posterior distributions of Q and λ remain unchanged.

An description of the exact Gibbs-sampler used in this work is given in Algorithm 2.

32

4. A hierarchical modification of the MMPP model

Algorithm 2: Gibbs sampler for hierarchical MMPP model
Data: {Z1, . . . , Zn}
Initialize:

1. Sample:
λ

(0)
i ∼ Γ(αλ,i, βλ,i)
q

(0)
ii ∼ Γ(αq,i, βq,i)

(q1,i, ..., qi−1,i, qi+1,i, ..qM,i)T
(0) ∼ Dir(αD,i) · qii

λ
(0)
Y ∼ Γ(αλY

, βλY
)

2. Sample {c1, ..., cn}(0) from P (ci|zi, λ(0)
Y)

3. Sample {Xt1 , . . . , Xtn}(0) recursively using the Forward-Backward algorithm
conditional on {c1, . . . , cn}(0), λ(0), and Q(0) as described in Equation 3.20

4. Sample {Xt}(0) conditional on {Xt1 , . . . , Xtn}(0) using Equation 3.22

for a ∈ {1, . . . , number of desired samples} do

1. Sample {c1, . . . , cn}(a) from P
(
c

(a)
k |zk, {Xt, t ∈ Ik}(a−1), λ

(a−1)
Y

)
as defined in

Equation 4.8

2. Sample {Xt1 , . . . , Xtn}(a) recursively using the Forward-Backward algorithm
conditional on {c1, . . . , cn}(a), λ(a−1), and Q(a−1) as described in Equation 3.20

3. Sample {Xt}(a) and {t′1, . . . , t′l}(a) conditional on {Xt1 , . . . , Xtn}(a) using
Equation 3.22

4. Calculate t̃(a)
i , n(a)

i , and r(a)
ij via equations 3.26-3.28 from {Xt}(a) and

{t′1, . . . , t′l}(a)

5. Sample:
λ

(a)
i ∼∼ Γ(αλ,i + ni,

(a) βλ,i + t̃
(k)
i)

q
(a)
ii ∼ Γ(αq,i +∑

j 6=i r
(a)
ij , βq,i + t̃

(a)
i)

(q1,i, ..., qi−1,i, qi+1,i, ..qM,i)T
(a) ∼ Dir(αD,i + ri)(a) · qii

λ
(a)
Y ∼ Γ(αλY

+ z
(a)
k − c

(a)
k , βλY

+ z
(a)
k)

33

4. A hierarchical modification of the MMPP model

4.3. Results and model comparison
We can now proceed to apply Algorithm 2 to the given data sets. We will discuss
the choice of prior hyperparameters, number of states, and convergence explicitly for
the Imperial College data before presenting the calculated sample distribution of the
underlying Markov process for both data sets.

Hyperparameter selection

The first thing we have to do is choose a number of an appropriate number of states
and a set of hyperparameters for our priors. We will start here with fitting a four-state
model before discussing the eventually appropriate numbers in section 4.3.

0.0

0.1

0.2

0.3

0 2 4 6

Rate

de
ns

ity

Prior λY

0.0

0.1

0.2

0.3

0.0 2.5 5.0 7.5 10.0

Rate [1/seconds]

de
ns

ity

Prior λi

0.00

0.02

0.04

0 100 200 300

Rate [1/hours]

de
ns

ity

Priors Q1:3 and Q4

Figure 4.3.: Prior distributions of λY , λi, and Qii for i ∈ {1, 2, 3} (red) and i = 4 (blue).

For all our parameters, we have to make sure that we choose our priors wide enough to
allow for proper convergence of the posterior, but narrow enough to initialize the para-
meters correctly. It is therefore helpful to look at the given data in order to incorporate
some information into the design of our priors.

λY :
We are not expecting the number of flows generated by each session to be excessively

high. From experience, we know that almost in general λY ∈ [0.5, 10]. An appropriate
prior on λY would therefore be given by

αλY
= 2, βλY

= 1. (4.10)

λi:
To allow for a wide state space exploration, we want to employ a prior that does not

impose any restrictions on the state’s individual Poisson rates. However, we do observe
an upper and lower limit in the possible Poisson rates. The highest rate of flow events
observed in the data set can be seen in the large spikes (around 50 events per second)
while the lowest rate lowest rate of arrival events observed in the data set (seen at 15:50
with around 250 events per hour, 0.07 events per second). Please keep in mind that
since λi represents the rate of unobserved session events, it will be considerably lower
(as mentioned above between 1/2 and 1/10) than the observed rates. However, we can
still infer an approximate region for λi with this information.

34

4. A hierarchical modification of the MMPP model

We will employ the same prior on all λi. Since there lie several orders of magnitude
between the upper and lower limit of the rates, we would like a prior that favours
smaller values while not suppressing larger ones in order to have enough resolution for
values of smaller magnitude during initialization. We therefore choose the following
hyperparameters for our Gamma-prior:

αλ,i = 1.2 1
sec , βλ,i = 1. (4.11)

In order to impose an ascending order on the state rates, we will sort the rates sampled
during initialization (explained in Section 4.3 for more details).

qii:
Since the Imperial data set is limited to three hours, we can assume that no state has

a half life exceeding this number. Furthermore, we dismiss any unreasonably high decay
rates leading to half lifes under 1 minutes with the exception of state 4 in order to allow
it to catch the faster decaying spikes observed in our data:

αq,1 = αq,2 = αq,3 = 5 1
sec ,

βq,1 = βq,2 = βq,3 = 1000,

αq,4 = 5 1
sec , βq,4 = 100.

(4.12)

qi 6=j :
Since we have no knowledge about the relative transition probability of state i into

state j, we employ an uninformative Dirichlet prior with αD,i = (1, 1, 1)T .

Interval length

Increasing the accumulation interval length usually leads to a decrease of computational
operations and computation time when sampling {Xt},Q,λ, λY |{z1, ..., zn}. However,
increasing the interval length heavily above the half life of any of the Markov states
distorts the estimation of the decay rates qi and should be avoided.

To fit our algorithm to the Imperial College data set, we chose an interval length of 5
seconds.

Results

Using the above described settings, we generate 500 samples of {Xt},Q,λ, λY |{z1, ..., zn}
using Algorithm 2. Figure 4.4 depicts an excerpt of the sampled {Xt} for the Imperial
College data. The whole sampled trajectory can be seen in Figure B.2.

In comparison to Figure 3.3, the improvements of our model are apparent: While
we are not able to identify any activity state coherently with the simple MMPP frame-
work, our new model is able to distinguish several states of user activity throughout

35

4. A hierarchical modification of the MMPP model

0

50

100

150

200

250

E
ve

nt
s

Observations Imperial College Data

1

2

3

4

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

14:30 14:35 14:40 14:45 14:50 14:55 15:00 15:05 15:10 15:15 15:20 15:25 15:30

time [hour]

U
nc

er
ta

in
ty

Figure 4.4.: Excerpt of sampled {Xt} for the Imperial College data. Binned flow data
(top), 500 samples of {Xt} (using Algorithm 2) (middle), and uncertainty of
the inferred state. The blue line indicates the sample mode at each point in
time while the thickness of the red lines indicates the amount of samples in
each state. The uncertainty is calculated by 1−αti where αti is the fraction
of the sample mode of all samples at time ti.

36

4. A hierarchical modification of the MMPP model

0

25

50

75

100

0.07 0.08 0.09 0.10

Rate [1/seconds]

de
ns

ity
λ1

0

10

20

30

40

0.28 0.30 0.32 0.34 0.36

Rate [1/seconds]

de
ns

ity

λ2

0

5

10

15

0.70 0.75 0.80 0.85

Rate [1/seconds]

de
ns

ity

λ3

0.0

0.5

1.0

1.5

2.0

5.2 5.6 6.0

Rate [1/seconds]

de
ns

ity

λ4

0.0

0.1

0.2

0.3

5 10

Rate [1/hours]

de
ns

ity

Q11

0.00

0.05

0.10

0.15

10 15 20 25 30

Rate [1/hours]

de
ns

ity

Q22

0.000

0.025

0.050

0.075

0.100

15 20 25 30 35 40

Rate [1/hours]

de
ns

ity

Q33

0.000

0.003

0.006

0.009

200 300 400 500

Q4 [1/hours]

de
ns

ity

Q44

0

3

6

9

12

3.8 3.9 4.0

λY

de
ns

ity

λY

Figure 4.5.: Sampled posterior distributions of Qii (blue), λi (green), and λY (red).

the whole data. The identified states are in good correspondance to the actual activity
on the computer, i.e. similar experiment phases are identified by the same state. The
state estimates are consistent and stable during each activity phase. As expected, the
described DNS are identified as a separate state. Furthermore, the overall uncertainty
of the {Xt} samples is small. An exception are points where the user activity changes,
since an exact estimation of the state change is difficult. A detailed interpretation of the
individual states will be presented in Section 4.3.
Figure 4.5 shows the sampled marginal posterior distributions of Q, λ, and λY . All

λi are sampled well within our previously estimated range, as is λY . Furthermore, the
decay rates Qi for state 1 to 3 are sampled in a reasonable range, corresponding to
state half lifes of 2-15 minutes, which is a good reflection of the activity phases in the
experiment. Since state 4 is capturing the above described DNS-spikes, the values for
Q4 are much higher, corresponding to a half-life of around 9 seconds.
Plots for the sampled posterior distributions of the parameters Qij/Qii, which indicate

the probability to move from state i to state j once a state change occurs, are given in
Figure B.3. As visible, the posterior distribution for all possible state changes is non-
vanishing. Since the number of activity state changes is comparably small, we do not
expect the posterior distributions to deviate strongly from our prior distribution. The
sampled values of Qij/Qii are therefore of little interest.

37

4. A hierarchical modification of the MMPP model

Burn−in

0.00

0.05

0.10

0.15

0 200 400 600

Sample step

Q
33

Sample chain Q33

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600

Sample step

λ 4

Sample chain λ4

3.8

4.0

4.2

4.4

0 200 400 600

Sample step

λ Y

Sample chain λY

0.00

0.25

0.50

0.75

1.00

0 10 20

Sample step

A
C

F

Q3,3

0.00

0.25

0.50

0.75

1.00

0 10 20

Sample step

A
C

F

L4

0.00

0.25

0.50

0.75

1.00

0 10 20

Sample step

A
C

F

LY

Figure 4.6.: Trace and autocorrelation plots for selected parameters. The blue line in-
dicates the discarded burn-in.

Convergence

The posterior distributions of the generated sample chain of Q, λ, and λY , depicted
in Figure 4.5, all appear to be well explored with a single pronounced mode. There is
an important aspect to be considered however: Since we impose the same priors on the
state parameters Qi and λi for every i, the posterior distribution is invariant under state
label permutation, i.e.

P (λi = a, λj = b,Qi = c,Qj = d|{z1, . . . , zn}) =
P (λi = b, λj = a,Qi = d,Qj = c|{z1, . . . , zn}).

(4.13)

The interchangeability of each state causes the posterior distribution P (Q,λ|{z1, . . . , zn})
to have multiple equivalent modes, which makes a complete exploration of the posterior
with MCMC techniques difficult to achieve. The non-identifiability of the components
under symmetric priors is known as the label switching problem (Jasra et al., 2005),
and is frequently observed in Bayesian mixture models. Due to the equivalence of the
posterior distribution under state label permutation, it is sufficient to explore one of the
posterior modes to describe the posterior distribution fully.
In order to have a consistent sample output, it often desired to suppress label switching,

i.e. to constrain the sample chain to one mode. Since the marginal posterior distributions
of our sampled parameters are well separated, we do not observe mode mixing. However,
if the marginals would show overlap, additional post-processing to re-label the states
would be an appropriate method to keep the output consistent.

38

4. A hierarchical modification of the MMPP model

Figure 4.6 depicts trace plots and autocorrelation plots of our sampled chain for se-
lected parameters. All parameters show a fast convergence towards a stationary distri-
bution, and a low autocorrelation, indicating a great efficiency of our sampler. The first
50 samples were discarded as burn-in.

Model comparison
An important question that arises in the context of finite mixture models for example
is the choice of an appropriate number of mixture components. Although likelihood
ratio tests and the BIC criterion are often appropriate for independent mixture models,
the sequential nature of finite state hidden Markov models leads to a stochastically
unbounded likelihood ratio and to an underpenalisation of the likelihood by the BIC
(Zhang and Siegmund, 2007).
Another promising criterion is the cross-validated likelihood criterion, which has been

proposed by Smyth (2000) in the case of independent mixtures. An advantage of this
criterion is that it seems to avoid some of the theoretical difficulties occurring with
penalised likelihood criteria and unrealistic assumptions regarding the distribution of the
data. If the data of the HMM consists of several independent sequences, cross-validated
likelihood can be applied to with the different sequences acting as individual training
and validation sets. If the data is given by a single sequence, the choice of independent
training and validation sets is more difficult due to the sequential dependence of the
data.
We will employ a deterministic half-sampling procedure for finite state-space HMMs

proposed by Celeux and Durand (2008), which splits the data into a set with odd indices
and a set with even indices:

We assume that we have an even number n = 2m of observations {z1, . . . , zn}. Define
the index set U1 , {1, 3, . . . , n − 1}. Define U2 , {2, 4, . . . , n}. We define the two
training and validation sets T1 , {zU1}, T2 , {zU2}.
We then proceed to calculate validation of T2 under T1 (and vice versa) by estimating

the parameter sample posterior distribution PT1 = P (Q,λ, λY |T1) using Algorithm 2,
and afterwards calculating the likelihood of T2 under PT1 via integration:

P (T2|PT1) =
∫
P (T2|Q,λ, λY) dPT1

≈ 1
N

N∑
k=1

P (T2|Qk,λk, λY k)
(4.14)

where N is the number of generated samples of PT1 . P (T2|Qk,λk, λY k) can be calcu-
lated via

P (T2|Qk,λk, λY k) =
∫
P (T2|{c1, . . . , cn})·

P ({c1, . . . , cn}|T2,Qk,λk, λY k) d{c1, . . . , cn}
(4.15)

39

4. A hierarchical modification of the MMPP model

−1400

−1200

−1000

−800

3 4 5 6 7 8

Number of states

LL
H

Cross−validated likelihoods

Figure 4.7.: Cross-validation log-likelihoods for different state numbers.

with P ({c1, . . . , cn}|T2,Qk,λk, λY k) being calculated via 2 with fixed parameters, and
P (T2|{c1, . . . , cn}) being given by Equation 3.8.
The splitting of the data with the described method changes the posterior distribution

of the decay rates Qii for the training and the validation set in the same way, in our
model it doubles them since we on average leave out half the time until the next state
change appears. The likelihood P (T2|{c1, . . . , cn}) (resp. T2) does not directly depend
on Qii, and the remaining parameter distribution remain unchanged. Therefore this
approach does not alter the validation likelihood.
Figure 4.7 depicts the cross-validation log-likelihoods for state numbers from 3 to 8,

with 7 states having the highest cross-validated likelihood. Figure 4.8 and B.4 depict
the sampled posterior of {Xt} for 7 states.

4.4. Result interpretation
The interpretation of the 4-state model in terms of human activity results are straight-
forward:

• State 1 corresponds to pure standby activity, no human actions are taken nor are
any programs open.

• State 2 corresponds to the presence of an inactive user, i.e. the internet browser
or a similar program is open, but no actions are taken. It is remarkable that the
watching of internet videos or ssh-communcation create flow events at a similar
rate and is therefore identified as state 2. Differences between these two activities
are however visible when looking at the length and the size of the transmitted
flows.

• State 3 identifies surfing activity of the user.

• State 4 captures the above described DNS spikes. Since these spikes are very
short, they do not correspond to a change in user activity, but are more or less a
nuisance. State 4 should therefore also be seen as a nuisance state that ensures

40

4. A hierarchical modification of the MMPP model

0

50

100

150

200

250
E

ve
nt

s
Observations Imperial College Data

2

4

6

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

14:30 14:35 14:40 14:45 14:50 14:55 15:00 15:05 15:10 15:15 15:20 15:25 15:30

time [hour]

U
nc

er
ta

in
ty

Figure 4.8.: Excerpt of sampled {Xt} for the Imperial College data with a 7 state model.

the model stability without indicating a user state. In a cyber-security framework,
the identification of the spikes through state 4 might also be of other interest.

Obviously, our framework models the state of the user only as perceived through
the machine. For instance, we observe multiple short drops of the perceived activity
from state 3 to state 2, indicating user inactivity, while it is most likely that the user
just stopped his actions shortly to read something of interest or similar. To make the
infer from activity on the computer to a general state of the person sitting behind the
computer, we need additional assumptions and post-process modeling. All in all, there
is a great correspondence of these four activity states that are sampled with our model,
and the actual user activity.
The interpretation of the 7-state model is a bit more difficult. State changes occur

while the activity state of the user does not change, and therefore do not model user
activity in a one-to-one correspondance. The uncertainty of our predictions however only
increases slightly. It can therefore rather be concluded that an individual user activity
state does not correspond to a single flow arrival rate, but possesses a more nuanced
spectrum of arrival rates. This nuanced spectrum can be captured more accurately by
an increase of the Markov process state number. A direct identification of the user state
is however is made more complicated.
We can conclude that a model with a small number of Markov states is able to dis-

tinguish between user absence, presence, and activity very well. However, different user
activities with similar flow generation rates are identified by the same state, such as ssh-

41

4. A hierarchical modification of the MMPP model

0

10

20

30

E
ve

nt
s

Observations LANL Data, Computer C6703

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75

time [Day]

U
nc

er
ta

in
ty

Figure 4.9.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

activity and an open browser. It might therefore be of interest to have a state space with
a higher resolution to model user activity. Increasing the state number of the Markov
process does increase the resolution with which we observe different flow arrival states in
our data, but it does not aid us in the discrimination of different activity states. Since
different user activities often have similar flow arrival rates, it is difficult to distinguish
them through the number just through the observed flow arrivals. In Section A.2, we
suggest a possible extension of our model that also incorporates other information such
as the length of the generated flows in order to build a more complete model of user
activity

4.5. Results for LANL data
Inference for the LANL data can be done in the same way as for the Imperial data. All
we have to do is to update the prior hyperparameters:

42

4. A hierarchical modification of the MMPP model

αλ,i = 1
day , βλ,i = 0.0006 ∀i ∈ {2, 3, 4, 5},

αλ,1 = 0.00001
day , βλ,1 = 1,

αq,i = 3
day , βq,i = 0.6 ∀i ∈ {1, 2, 3, 4, },

αq,5 = 5
day , βq,5 = 0.002.

(4.16)

where we considered the fact we observe large periods during which the computer is
off and no flows are generated (i.e. λ1 ≈ 0), and that the decay rate for the state that
is supposed to capture the observed spikes is larger than for the other states. We chose
an accumulation interval length of 30 seconds.

Figure 4.9 depicts the sample posterior distribution of the Markov process {Xt} for a
selected computer. The corresponding parameter posteriors can be found in Figure B.5,
and further plots for selected computers can be found in the appendix chapter C. Cross-
validation of the likelihood as described in Section 4.3 suggests that the optimal number
of states is either 5 or 6 with similar cross-validated likelihoods for both numbers.
Since we have no absolute knowledge about the activity state of the computer users

for the LANL data, the evaluation and interpretation of our results is more difficult than
for the Imperial College data. Still, phases during which the computer is off are safely
identified, and our model is able to distinguish days during which the user is obviously
active (day five and six) from days during which the user is most likely not logged in (day
7). Furthermore, phases with different flow arrivals distinguished on day five and day six
that are imminent in the data. The question remains if these phases truly correspond
to different states of user activity.
It is noticeable that the uncertainty of {Xt} is higher than for the Imperial College

data. This can be explained by the fact that the LANL data only internal traffic. For
this reason, the number of flows generated by a computer (1303 events in three days for
machine C6703) is much lower than for the Imperial College data (28488 events). The
posterior distributions of the parameters and the Markov process are thus estimated
with much less precision (also visible in Figure B.5). To achieve greater precision, more
data is necessary.

Chapter summary

In this chapter, we introduced a hierarchical model that is based on a batch MMPP, and
we showed how to inference and parameter estimation can be done in our new model
by extending the Gibbs sampler of Fernhead and Sherlock. We demonstrated that our
model addresses the issues of a conventional MMPP in regards of the tail distribution of
network traffic. We then demonstrated how choose appropriate prior hyperparameters
and accumulation interval lengths, and applied our developed framework to the Imperial
College data and a selected computer from the LANL data. The results prove that our

43

4. A hierarchical modification of the MMPP model

framework is capable of inferring a reasonable Markov process from the given data, with
convergent parameter posterior distributions in a reasonable and consistent range. We
discussed the interpretation of our results in regards of human activity and linked them
to the actual activity that was taking place during our experiment, concluding that our
framework captures general activity states in an accurate way. Finally, we discussed
some difficulties regarding the incapability of distinguishing activities with similar flow
arrival rates, and the existing of a more nuanced rate spectrum for individual activities.

44

5. Conclusion and outlook

In this thesis, we have established a novel Bayesian framework that is able to identify
temporal patterns in the network flow generation of individual personal computers. The
consistency of our framework was demonstrated by applying it on 10 computers from
the LANL enterprise network. A controlled experiment conducted during this project
verified that the identified patterns can be linked quite closely to states of human activity.

As we have shown, flow arrivals cannot be modeled accurately by the well-established
Markov modulated Poisson process due to strong deviations in the arrival distribution.
We proposed a new hierarchical model, based on the MMPP, that addresses this problem
sufficiently while retaining the computational simplicity and scalability of a conventional
MMPP-based model. Our model extends the MMPP model adding a latent layer that
separates the observations from the observations. This approach is inspired by a network
traffic simulation model by Muscariello et al. (2005) and reflects the physical process
of flow generation to some extend. We then adopted the concept of the exact Gibbs
sampler by Fearnhead and Sherlock (2006) and extended it to incorporate our proposed
model. Our model is fully Bayesian, and samples the posterior distribution of the Markov
process that represents the user’s activity state. Our implementation samples 500 process
trajectories in less than a minute for approximately 30,000 observed flow events.

Our model has identified different activity states on multiple computers in the LANL
data set, and we validated our results with data from a controlled experiment within the
Imperial College network. However, we have seen that the interpretation of the results is
not straightforward as the correspondence between user activity states and flow arrival
rates is not always one-to-one, i.e. individual user activity states can correspond to
more than one arrival rate. Models with fewer latent states of the Markov process
therefore yield, but clearer distinction of individual states. Models with a larger state
number however might provide a good resolution in the distinction of individual activities
when combined with other quantities in the flow log. In order to achieve this, it is
possible to extend our model to incorporate additional values collected in flow logs
to build a finer distinction of user activities. A concrete plan for a possible model
extension incorporating cumulated connection lengths that would retain the analytical
and computational benefits of our current model is described in Section A.2.

The estimation of human activity states has direct applications in modelling human
behaviour in order to identify intruders operating inside enterprise computer networks,
and is intended as a building block in a larger Bayesian cyber-security model. Sev-
eral other potential applications such as Internet traffic modelling for engineering and

45

5. Conclusion and outlook

performance evaluations, or user monitoring in online marketing, might benefit from
both its advantages over conventional MMPP models and its computational scalability.
Furthermore, our model can be used for multiple applications outside of network model-
ling in which events arrivals are not exactly Poisson distributed. The release of heavily
optimised computational routines is planned in the form of an R-C++-package.

46

Bibliography
L. E. Baum. An inequality and associated maximization technique in statistical estim-
ation for probabilistic functions of Markov process. Inequalities, 3:1–8, 1972.

L. Breuer. An EM algorithm for batch Markovian arrival processes and its comparison
to a simpler estimation procedure. Annals of Operations Research, 112(1):123–138,
2002.

T. Burzykowski, J. Szubiakowski, and T. Rydén. Analysis of photon count data from
single-molecule fluorescence experiments. Chemical Physics, 288(2):291–307, 2003.

G. Celeux and J.-B. Durand. Selecting hidden Markov model state number with cross-
validated likelihood. Computational Statistics, 23(4):541–564, 2008.

N. Y. Conteh and M. D. Royer. The rise in cybercrime and the dynamics of exploiting
the human vulnerability factor. International Journal of Computer (IJC), 20(1):1–12,
2016.

P. A. Devijver. Baum’s Forward-Backward algorithm revisited. Pattern Recognition
Letters, 3(6):369–373, 1985.

P. Fearnhead and C. Sherlock. An exact Gibbs sampler for the Markov-modulated
Poisson process. Journal of the Royal Statistical Society: Series B (Statistical Meth-
odology), 68(5):767–784, 2006.

A. Hobolth and E. A. Stone. Simulation from endpoint-conditioned, continuous-time
Markov chains on a finite state space, with applications to molecular evolution. The
Annals of Applied Statistics, 3(3):1204âĂŤ1233, 2009.

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and
the label switching problem in Bayesian mixture modeling. Statistical Science, pages
50–67, 2005.

A. D. Kent. Comprehensive, multi-source cyber-security events data set. Technical
report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2015.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of
Ethernet traffic. In ACM SIGCOMM Computer Communication Review, volume 23,
pages 183–193. ACM, 1993.

L. Muscariello, M. Mellia, M. Meo, M. A. Marsan, and R. L. Cigno. Markov models of
internet traffic and a new hierarchical MMPP model. Computer Communications, 28
(16):1835–1851, 2005.

47

Bibliography

J. Neil, C. Hash, A. Brugh, M. Fisk, and C. B. Storlie. Scan statistics for the online
detection of locally anomalous subgraphs. Technometrics, 55(4):403–414, 2013.

V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM
Transactions on Networking (ToN), 3(3):226–244, 1995.

T. Rydén. An EM algorithm for estimation in Markov-modulated Poisson processes.
Computational Statistics & Data Analysis, 21(4):431–447, 1996.

P. Smyth. Model selection for probabilistic clustering using cross-validated likelihood.
Statistics and computing, 10(1):63–72, 2000.

C. Tankard. Advanced persistent threats and how to monitor and deter them. Network
security, 2011(8):16–19, 2011.

R. Walters. Cyber attacks on US companies in 2014. The Heritage Foundation, 4289:
1–5, 2014.

N. R. Zhang and D. O. Siegmund. A modified Bayes information criterion with applic-
ations to the analysis of comparative genomic hybridization data. Biometrics, 63(1):
22–32, 2007.

48

A. Additional theory

A.1. Simulation from an end-point constraint CTMP on finite
state space

Let {Zt, t ∈ [0, T]} be a CTMP with generator matrix Q. Let Ztk = a, Ztk+1 = b.

Modified Rejection Sampling
If a = b:

1. Sample {Zt, 0 ≤ t ≤ T} using simple forward sampling with Z0 = a.

2. If ZT = b, accept the sample, otherwise return to 1.

If a 6= b:

1. Sample τ from

f(τ) = Qaae
−τQaa

1− e−TQaa
, 0 ≤ τ ≤ T, (A.1)

and choose a new state c 6= a from a discrete probability distribution with masses
−Qac/Qaa

2. Sample {Zt, tk + τ ≤ t ≤ tk+1} using simple forward sampling with Zτ = a.

3. If ZT = b, accept the sample, otherwise return to 1.

Modified rejection sampling is particularly fast if the probability mass−Qac/Qaa for all
states Zt can transition to from a is concentrated on a small number of states. However,
if Zt requires a lot of state transitions to get from a to b, modified rejection sampling
will almost certainly fail, and is therefore inappropriate for us to use to sample Vt during
intervals with a high observed ck.

Uniformization
Define µ = maxc−Qcc. Define

R = I + 1
µ
Q, (A.2)

and define the probability density of the number of state changes N as

P (N = n|Z0 = a, ZT = b) = e−µT
(µT)n
n!

Rnab
e−QTab

. (A.3)

49

A. Additional theory

1. Sample n from A.3.

2. If n = 0, we are done: Zt = a, 0 ≤ t ≤ T .

3. If n = 1 and a = b, we are done: Zt = a, 0 ≤ t ≤ T .

4. If the n = 1 and a 6= b, sample t1 from a uniform distribution in [0, T], and set
Zt = a, 0 ≤ t ≤ t1, and Zt = b, t1 ≤ t ≤ T .

5. If n ≥ 2, draw n independent samples from a uniform distribution in [0, T], and
sort them in order as {t1 ≤ · · · ≤ tn}. Simulate Zt1 , . . . , Ztn from a discrete-time
Markov chain with transition matrix R conditional on X0 = a, and Ztn = b.

In step 1 above, we sample n by drawing u ∼ Unif(0, 1), and letting n be the first time
the cumulative sum of A.3 exceeds u.

Note that we allow virtual state changes, in which a jump occurs but the state does
change. This makes Uniformization sampling comparably inefficient if the number of
actual state changes is much smaller than µ · T . However, we are guaranteed to find a
sample path in one iteration.

For large matrices transition matrices Q, the biggest computational load during Uni-
formization sampling is the calculation of Rn for each n. When simulating {Vt} for
our MMPP, R stays constant for each interval Ik. We can therefore calculate Rn up
to a chosen limit nl, and store all Rn before starting the simulation of {Xt} to greatly
decrease the computation load.
To simulate the whole trajectory of {Xt}, we need to simulate {Vt} for each accumu-

lation interval Ik. If ck ≤ 10 and Xtk = Xtk+1 (sampled through Forward-Backward
algorithm), we will use Modified Rejection sampling. Else, we will use Uniformization
using the prior calculated Rn, n ∈ {0, . . . , nl}.
The sparse block-structure of R principally enables the use of faster block multiplica-

tion techniques if needed. This was however not investigated in this work.

A.2. Possible extension incorporating flow durations
Our current model is based solely on the arrival times of flow events. A possible and
promising addition that might help to build a finer distinction of user activities is the
incorporation of connection durations. Concretely, we propose the use of the cumulated
time lk of all connections inside of each accumulation interval Ik. Following the proposal
of Muscariello et. al, lk can be modelled as being exponentially distributed with a rate
governed by another latent variable c′k, similar to the earlier introduced sessions.

Modelling connection lengths is promising since they are limited by the user’s presence,
in contrast to transmitted traffic size. However, an overwhelming amount of transmitted
flows is recorded with duration zero. This makes it difficult to model the total flow
lengths in an interval in dependence of the number of flows.

50

A. Additional theory

XIi−1 XIi
XIi+1

cici−1 ci+1c′ic′i−1 c′i+1

... ...
{λk} {λk} {λk}{λ′k} {λ′k} {λ′k}
Pois Pois PoisPois Pois Pois

zizi−1 zi+1lili−1 li+1

λY λY λYλL λL λL

shifted Pois shifted Pois shifted PoisExp Exp Exp

Figure A.1.: Graphical model for a possible extension of our proposed model that incor-
porates observed flow lengths.

We add another set of Markov state dependent arrival rates λ′ , {λ′1, . . . , λ′M} for a
second Poisson process N ′(t) with rate λ′(t) = λ′i=Xt

. Let c′k , N ′(tk) − N ′(tk−1) be
the number of sessions in Ik. The MMPP now generates two different types of events ck
and c′k, i.e. the MMPP acts now on a two-dimensional space. The estimation of of {Xt}
in the two-dimensional case can be done in a similar manner as for the one-dimensional
case.
Let di be the duration of the flow event t′i. The total flow duration lk during the

interval Ik is given by

lk ,
l∑

i=1
di1tk−1<t

′
i≤tk . (A.4)

We propose to relate lk to c′k through an exponential distribution:

P (lk) = c′kλD exp(−c′kλDlk) (A.5)

where λD is the ground rate of the exponential distribution. A graphical model of
our proposed model can be found in figure A.1. This model will hopefully capture
the piecewise distribution of flow lengths through the parameters λ′. Furthermore, it
will be straightforward to incorporate this model into our Gibbs sampling framework
by sampling {c′1, . . . , c′n} similarly to {c1, . . . , cn}, and then sampling {Xt} conditional
on
{
{c′1, . . . , c′n}, {c′1, . . . , c′n},Q,λ,λ′

}
. This is however just a proposal, and the exact

relation of lk with ck might be better modelled in another way.

51

B. Additional plots

52

B. Additional plots

0

1

2

0 1 2 3 4

Shannon entropy

de
ns

ity

Ports day/night distributionA

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4

Shannon entropy
de

ns
ity

Ports hourly distributionB

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4

Shannon entropy

de
ns

ity

Destinations day/night distributionC

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4

Shannon entropy

de
ns

ity
Destinations hourly distributionD

0

500

1000

1500

2000

0 10 20 30 40

destination computers per day

co
un

t

Source host distribution

0

1000

2000

3000

0 100 200 300 400

destination ports per day

co
un

t

Source host distribution

Figure B.1.: Entropies of the hourly and day/night distribution of source hosts in the
network, and marginal distributions depicting the number of contacted des-
tinations and ports.

53

B. Additional plots

0

50

100

150

200

250

E
ve

nt
s

Observations Imperial College Data

1

2

3

4

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

14:00 14:30 15:00 15:30 16:00 16:30 17:00

time [hour]

U
nc

er
ta

in
ty

Figure B.2.: Total trajectory of sampled {Xt} for the Imperial College data for a 4 state
model.

0

10

20

30

0.0 0.2 0.4 0.6 0.8

Rate

co
un

t

Q12 Q11A

0

20

40

60

0.0 0.2 0.4 0.6

Rate

co
un

t

Q13 Q11B

0

10

20

30

0.00 0.25 0.50 0.75

Rate

co
un

t

Q14 Q11C

Figure B.3.: Posterior distribution for relative state change probabilities. Since there
are in total 12 parameters, we choose to only plot the relative state changes
starting from state 1.

54

B. Additional plots

0

50

100

150

200

250

E
ve

nt
s

Observations Imperial College Data

2

4

6

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

14:00 14:30 15:00 15:30 16:00 16:30 17:00

time [hour]

U
nc

er
ta

in
ty

Figure B.4.: Total trajectory of sampled {Xt} for the Imperial College data for a 7 state
model.

55

B. Additional plots

0

100

200

300

400

0.00 0.05 0.10 0.15

Rate [1/day]

de
ns

ity

λ1

0.000
0.005
0.010
0.015
0.020

80 120 160 200

Rate [1/day]

de
ns

ity

λ2

0.000

0.005

0.010

0.015

200 250 300 350 400

Rate [1/day]

de
ns

ity

λ3

0.000

0.003

0.006

0.009

500 600 700 800 900

Rate [1/day]

de
ns

ity

λ4

0e+00

1e−04

2e−04

3e−04

4e−04

7500 10000 12500 15000

Rate [1/day]

de
ns

ity

λ5

0.0

0.2

0.4

2 4 6

pate(Rate [1/day])

de
ns

ity

Q1

0.0

0.2

0.4

0.6

0 2 4 6

pate(Rate [1/day])

de
ns

ity

Q2

0.00

0.02

0.04

0.06

20 40 60 80

Rate [1/day]

de
ns

ity

Q3

0.00

0.02

0.04

0.06

20 40 60 80

Q4 [1/day]

de
ns

ity
Q4

0.00000

0.00025

0.00050

0.00075

0.00100

2000 3000 4000 5000

Q5 [1/day]

de
ns

ity

Q5

0.0

2.5

5.0

7.5

10.0

1.3 1.4 1.5 1.6

λY

de
ns

ity

λY

Figure B.5.: Sampled posterior distributions of Qi, λi and λY for a computer in the
LANL network (corresponding to figure 4.8).

56

C. Plots for additional LANL computers

0

20

40

E
ve

nt
s

Observations LANL Data, Computer C9020

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75

time [Day]

U
nc

er
ta

in
ty

Figure C.1.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

57

C. Plots for additional LANL computers

0

20

40

60

E
ve

nt
s

Observations LANL Data, Computer C7379

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.2.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

0

10

20

30

E
ve

nt
s

Observations LANL Data, Computer C7564

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.3.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

58

C. Plots for additional LANL computers

0

10

20

30

40

50

E
ve

nt
s

Observations LANL Data, Computer C8873

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0
0.1
0.2
0.3
0.4
0.5

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.4.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

0

10

20

30

E
ve

nt
s

Observations LANL Data, Computer C9531

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.5.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

59

C. Plots for additional LANL computers

0

10

20

30

40

E
ve

nt
s

Observations LANL Data, Computer C9676

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.6.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

0

20

40

E
ve

nt
s

Observations LANL Data, Computer C10047

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.7.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

60

C. Plots for additional LANL computers

0

20

40

60

E
ve

nt
s

Observations LANL Data, Computer C13845

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5

time [Day]

U
nc

er
ta

in
ty

Figure C.8.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

0

20

40

60

E
ve

nt
s

Observations LANL Data, Computer C11858

1

2

3

4

5

P
ro

ce
ss

 s
ta

te

Estimated Markov process

0.0

0.2

0.4

0.6

time [Day]

U
nc

er
ta

in
ty

Figure C.9.: Excerpt of sampled {Xt} for a selected computer in the LANL data.

61

	Introduction
	Relation to cyber-security
	Contribution of this work

	Data Analysis
	Network flow data
	Data used in this work
	Los Alamos National Laboratory data
	Imperial College data

	Data cleaning

	Bayesian framework for the Markov-modulated Poisson process
	Likelihood for the MMPP
	Likelihood for the batch MMPP
	Forward-Backward Algorithm
	Simulate full underlying Markov process
	Gibbs Sampler
	A naive fitting attempt and analysis

	A hierarchical modification of the MMPP model
	Model
	Modified Gibbs sampler
	Results and model comparison
	Result interpretation
	Results for LANL data

	Conclusion and outlook
	Bibliography
	Additional theory
	Simulation from an end-point constraint CTMP on finite state space
	Possible extension incorporating flow durations

	Additional plots
	Plots for additional LANL computers

